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Abstract

Cloud tenant networks are complex to provision, configure,
and manage. Tenants must figure out how to assemble, con-
figure, test, etc. a large set of low-level building blocks in
order to achieve their high-level goals. As these networks
are increasingly spanning multiple clouds and on-premises
infrastructure, the complexity scales poorly. We argue that the
current cloud abstractions place an unnecessary burden on the
tenant to become a seasoned network operator. We thus pro-
pose an alternative interface to the cloud provider’s network
resources in which a tenant’s connectivity needs are reduced
to a set of parameters associated with compute endpoints. Our
API removes the tenant networking layer of cloud deploy-
ments altogether, placing its former duties primarily upon the
cloud provider. We demonstrate that this API reduces the com-
plexity experienced by tenants by 80-90% while maintaining
a scalable and secure architecture. We provide a prototype
of the underlying infrastructure changes necessary to support
new functionality introduced by our interface and implement
our API on top of current cloud APIs.

1 Introduction
Almost all large cloud customers use multiple cloud providers
to improve reliability and avoid provider lock-in [57]. Unfor-
tunately, splitting a workload among large cloud providers is
not as seamless as it should be. One major problem is that
today’s tenant networking abstractions are essentially virtual-
ized versions of the low-level building blocks used to build
physical networks and hence customers are required to craft
complex topologies using subnets, virtual links, gateways, a
myriad of virtual appliances, etc.

While an individual virtual network or simple deployment
may not be overly complex, for larger tenants, reasoning about
the scalability, availability, security, etc. of their virtual net-
works requires detailed knowledge and configuration of a
range of networking technologies, and the problem is particu-
larly acute when considering transit between clouds.

In response to this underlying complexity, our goal is
to make multicloud architectures simple by making this
inter-virtual-network transit trivial. We achieve this primarily
through leveraging existing “publicly-routable but default-off”
addresses for all endpoints. These addresses are publicly-
routable, but the cloud provider will deny all traffic not specif-
ically permitted by the tenant. With this choice, connectivity
becomes trivial with only minor infrastructure changes.

With this connectivity assumption, we develop a new API
for cloud tenants to reserve networking resources based on
high-level abstractions. Ultimately, this results in a declarative
approach that allows tenants to essentially associate SLOs
to endpoints, without concern for how to achieve their net-
working goals. In other words, we believe that the best way
for tenants to think about networking is to not think about
networking at all.

Today’s tenant networking abstractions are largely relics of
the early cloud era, with a 1:1 mapping between datacenter
physical network devices and cloud networking abstractions.
This appealed to early cloud customers who wanted the same
management experience as they shifted infrastructure from
private datacenters to the cloud, but these abstractions are
not fundamentally necessary nor especially accurate to what
occurs in the cloud provider’s network underneath. A key
contribution of our paper is to show that even a modest refac-
toring of the existing functionality and modification of the
underlying network virtualization platform can result in a far
simpler higher-level API.

Such an API is beneficial to cloud providers as well as it
allows them to offer their customers a seamless multicloud
experience, and yet retain the ability to differentiate (e.g.,
through performance, options, etc.). Furthermore, and perhaps
more importantly, the API is far less complex than the low-
level APIs offered today. A simpler API means fewer mistakes
and thus fewer resources dedicated to customer support.

We recognize that our proposed cloud interface may not
be immediately appropriate for all cloud tenants. Fortunately,
the abstractions we propose can coexist with those available
today so that tenants may choose the tradeoff they desire.

This paper presents the rationale (§2), design (§3-5), imple-
mentation (§6), and evaluation (§7) of a new API – which we
refer to as Invisinets – for tenant networking. This work builds
on our earlier workshop paper [41], refining and expanding
the API as well as adding a complete implementation and
evaluation. Our evaluation applies this API to several deploy-
ment case studies and measures several metrics to capture
complexity. Accordingly, we show that Invisinets can reduce
the number of network components that a tenant must interact
with by ∼80%-90% in these scenarios.

2 Motivation
In this section, we discuss the status quo to motivate the
need for a simpler tenant networking API. Throughout this
paper, we default to Azure terminology for cloud network



components, though equivalent ones are typically available in
other clouds.

2.1 Deployment Walkthrough
Consider an enterprise tenant whose workloads span multi-
ple regions within a cloud, multiple clouds, and an on-prem
deployment. To highlight the complexity that enterprise net-
work engineers encounter, we will walk through the steps to
construct such a virtual network today. At a high level, tenants
must complete the following 5 steps to create a deployment.
(1) Create virtual networks. The basic construct in a tenant’s
network is a virtual network (or VPC in the terminology of
AWS and GCP) which builds on the traditional concept of a
subnet – a portion of the network whose hosts share a com-
mon IP address prefix. The tenant’s first step, creating their
virtual networks (or vnets), involves assigning IP prefixes
to each vnet based on the anticipated number of instances,
whether they should be IPv4 or IPv6, public or private, etc.
These are important decisions as a particular choice (e.g.,
IPv4 vs. IPv6) leads to a separate path down the decision
tree of subsequent connectivity options. As a tenant’s deploy-
ment scales, managing non-overlapping subnets across 100s
of vnets becomes challenging, prompting special address plan-
ner tools [9]. Beyond address management, defining a vnet
involves configuring a range of additional parameters such
as security groups, ACLs, route tables, and individual VM
interfaces. For simple deployments, this complexity can be
hidden via default configurations but this approach rapidly
breaks down with larger deployments.
(2) Connectivity in/out of the virtual network. Next, the ten-
ant must define how instances within a vnet access resources
outside the vnet. Options include setting up a “NAT Gateway”
(for address translation), a “VPN Gateway“ (for private VPN
connectivity), or a “Virtual Network Gateway” (which can be
configured for VPN or to terminate a direct link). AWS has
even more gateway options, some simply to allow the virtual
network to access the Internet [8]. Each gateway must be
configured with the appropriate routing and access policies.
(3) Networking multiple virtual networks. Next, the tenant
must interconnect these virtual network. Within a cloud, this
generally requires a virtual network peering and installing the
necessary routes, though these links often have some regional
limitations. To connect virtual networks across clouds, VPN
gateways or Internet access (via necessary gateways or secu-
rity rules) will be necessary. Each of these connections come
with their own specific configuration parameters.
(4) Specialized Connections. An increasingly common com-
ponent in large tenant networks are dedicated connections
that promise higher bandwidth, lower latency, and/or more
consistent performance than seen on the public Internet (e.g.,
ExpressRoute [44], Dedicated Interconnect [28], or Direct
Connect [7]). These allow tenants to reserve a physical, ded-
icated link between their virtual network and a colocation
facility. From there, the enterprise may complete the circuit to

their on-prem resources or stitch the connection together with
one from another cloud. Provisioning and managing these
links requires low-level networking knowledge such as BGP
configuration and coordination between the enterprise, cloud
provider, and the colocation point. Since these dedicated con-
nections are expensive, tenants might configure their routers
to schedule higher priority or sensitive traffic over these links,
while routing other traffic over the public Internet.
(5) Appliances. The above steps establish a basic topol-
ogy and connectivity between the tenant’s instances, but ten-
ants also deploy a range of virtual appliances such as load
balancers and firewalls. Each cloud offers both first-party
and third-party appliances for many of these purposes. Even
within the first-party selection, there are often multiple op-
tions for a single appliance. The tenant must select appliances,
place them in their virtual topology, configure routing to steer
traffic through the right appliances, and finally configure each
appliance (e.g., DPI rules, load-balancing rules, etc.).

Once the tenant has completed all of these steps, the job is
not done. The tenant must continue to respond to changing
requirements, application and network migrations, inevitable
configuration mistakes, and outages caused by any other is-
sue. When determining their procedure for confronting these
issues, tenant network operators must keep all details from
the above steps in mind, acting as a seasoned network expert.

2.2 Problems
We briefly highlight the main sources of complexity that we
observe from the above walkthrough.
(1) Abstractions are too low-level. Provisioning and man-
aging a virtual network involves many of the same steps as
in a physical datacenter. Tenants are essentially given virtual
versions of the low-level abstractions found in a physical net-
work (e.g., links, gateways, subnets) and must assemble these
(which involves topology planning, routing policies, etc.) to
achieve their higher-level intents for the overall deployment.
Many of these abstractions require addressing configuration
in particular to achieve basic connectivity between tenant
applications/endpoints.
(2) Complex planning. Beyond determining the topology of
the deployment, cloud marketplace options can make it diffi-
cult to determine the correct virtual appliance. For example,
Azure offers four load balancing options and the flow chart
to guide the decision is five layers deep [43] and this does
not consider other third-party (i.e., non-Microsoft) options.
Cloud appliance marketplaces also feature third-party options
(e.g., firewalls from Palo Alto Networks) that vary in features
and price points. A cottage industry of businesses offering
answers on how to minimize cloud costs has appeared to help
tenants with this problem in recent years [10, 17–19, 66].
(3) Fragmentation across clouds. As each cloud has its own
similar yet different abstractions and appliances, tenants with
multicloud deployments end up with siloed stacks for each
cloud. This often results in teams dedicated to each cloud



with their own expertise, scripts, and approaches.
(4) Complex to maintain and evolve. As the requirements
for their applications change, tenants will evolve their own
deployments. Likewise, tenants must adapt as cloud providers
evolve their offerings. This adds complexity and manage-
ment overhead to the existing challenge of keeping applica-
tions modern and performant for tenants. Misconfigurations
are common causes of network incidents [36] and outages
( [35, 62] provide recent high-profile examples). With 1:1 ab-
stractions, virtual networks suffer many of the same issues.
The cloud providers also suffer from this as well, as they
are obligated to provide support to a wide array of clients
with unique deployments. Further, management complexity
increases as the deployment size increases, so large enterprise
tenants suffer significant management burdens.

In summary, tenant networks today are constructed from
low-level building blocks that are unique to a given cloud.
With the growing popularity of large, multicloud deployments,
this complexity can compound and become even more diffi-
cult.

2.3 Current Solutions
In our experience, many enterprises undertake this complexity
themselves using an array of per-vendor controllers and DIY
scripts. This often requires a team that understands network-
ing in all its gore: BGP, address management, VPN config, etc.
These teams must understand multiple cloud environments,
which change frequently and outside of their control.

Other tenants are turning to a new generation of 3rd-party
multi-cloud management solutions [5, 12, 67, 68]. Some of
these solutions are essentially a shim on top of the various
cloud networking abstractions. They provide a unified “pane
of glass” via which the tenant manages individual devices
across clouds [12, 67] but do not fundamentally change the
level of abstraction; e.g., a key component in Aviatrix de-
ployments is a transit router abstraction that interconnects
virtual networks. Yet other 3rd-party solutions essentially run
a virtual network as a service for tenants [5,68], which allows
tenants to completely outsource the problem. This shifts the
burden but does not fundamentally solve it.

Anthos [22] integrates k8s and service meshes in a manner
that frees app developers from having to reimplement com-
mon networking related tasks on a per-app basis. With Anthos,
every service container is integrated with a “sidecar” con-
tainer that implements common network-related tasks such as
TLS termination, HTTP load balancing, tracing, and so forth.
This clean separation between app and networking concerns
gives app developers a cloud-agnostic (and hence multicloud
friendly) approach to implementing network-related features.
However, it is important to note that Anthos does not address
the problem of network virtualization that we address here:
in Anthos, sidecars are L7 proxies and (like all k8s services)
they assume L3 addressing and connectivity has already been
established. Implementing that L3 connectivity still requires

a network engineer to set up the virtual networks, links, VPN
gateways, etc. that we have been discussing [30,33]. Thus we
view the goals of Anthos and Invisinets as complementary:
Anthos simplifies the construction of multicloud deployments
for app developers, while Invisinets does the same for infras-
tructure operators.

2.4 It’s Time for Simplification
Network virtualization technologies were originally designed
to allow cloud providers to virtualize their physical network
infrastructure [34, 53]. In this context, providing the user (in
this case, the datacenter operator) with virtualized equiva-
lents of their physical network is appropriate, and we do not
question the approach.

Extending the same approach to cloud tenants also made
sense in the early days of cloud adoption when enterprises
with well-established on-prem datacenters often used the so-
called “lift-and-shift” strategy: creating a networking struc-
ture that mimics the on-premises network that previously
served the workload. This strategy was justifiably appealing
as it allowed tenants to use familiar tools and tested configura-
tions in their new cloud deployments. However, we see this ap-
proach as neither desirable nor necessary as tenants embrace
the cloud more fully in both the scope of their deployments
and in (re)designing applications for cloud environments.

Nonetheless, we recognize that certain enterprises may
choose to continue with building virtual networks for reasons
that range from satisfying compliance requirements (e.g., with
data protection laws [55,65]), to familiarity with existing tools,
and the perception of greater security. Fortunately, this need
not be an either-or decision: the architecture we propose can
be deployed alongside existing solutions allowing tenants to
choose whether and when to migrate their workloads.

Our approach requires new support from cloud providers,
but we believe this is reasonable since the current situation is
non-ideal even for cloud providers. The current complexity
imposes a steep learning curve for onboarding new customers,
and plenty of room for configuration errors that will, regard-
less of fault, result in unhappy customers. Simplification can
decrease the number of tenant errors and therefore decreases
the support burden on the cloud provider. Further, the cloud
provider could likely achieve higher resource efficiency by
taking control of networking and orchestration from tenants.

3 Approach
Our guiding philosophy in designing a simplified network-
ing API is that the right way for a tenant to think about the
network is to not think about it at all. I.e., ideally, the net-
work should be invisible. When diagnosing the root cause of
today’s complexity, we arrive at the observation that the prob-
lem starts with the fact that tenant endpoints live in a private
IP address space. Given private addresses, tenants must then
establish (virtual) connectivity between them which necessar-
ily implies managing subnets, constructing a virtual topology



with links, routers, and appliances, running routing protocols
that must be configured, and so on.

Seeking to avoid this leads us to an alternate proposal: can
we give every endpoint a public IP address? This makes con-
nectivity trivial, notably even across clouds. Essentially, this
allows virtual networks to reuse the connectivity of the under-
lying (physical) network rather than recreating it. Importantly,
we must assume IPv6 so that address scarcity is not an issue.

At first glance, our proposal might seem concerning from
the viewpoint of security: if any host on the Internet can reach
any tenant endpoint, then surely we’re exposing a tenant’s
endpoints to attack, including DDoS. Yet, our intuition was
that security should not be a concern for public endpoints that
are hosted in the cloud. This is because cloud providers (or
CPs for brevity) have already addressed this problem with
their own address management architectures. As we elaborate
on in the next section, within a CP’s infrastructure, when an
endpoint is assigned a public IP address P1, this address is
not actually routable within the CP’s regional datacenters. I.e.,
the endpoint associated with P is not actually hosted on a
server with the address P. Instead, the server at which the
endpoint runs has an internal/private address D and the CP
uses solutions to translate P to D with appropriate security
and access control checks at the point of translation.

Thus, instead of the typical public vs. private address trade-
off, P represents a new form of address that is publicly
routable but default off (PRDO), with the important prop-
erty that a packet destined to a PRDO address is delivered to
the CP ’s domain but will not be delivered to an endpoint until
the CP has explicitly taken action to associate P to a physical
endpoint’s D. Thus our intuition was that we can leverage the
PRDO addressing architecture to spare tenants from having
to solve the connectivity problem in their virtual networks.

Given this, our next step was to verify our intuition and
understand whether CP address management infrastructure
could indeed be leveraged and extended to serve all tenant
endpoints. To answer these questions, we engaged with two
major CPs (Azure and GCP) and found that, perhaps surpris-
ingly, our proposal could be supported with little modification
to their existing infrastructure and raises no new scaling or
security challenges. We elaborate on existing CP address
management infrastructure and the implications of PRDO ad-
dressing in §4. Thus our contribution lies not in devising novel
techniques or radical clean-slate designs but rather in propos-
ing a radically simplified tenant abstraction and showing how
we can repurpose existing infrastructure to implement this
abstraction.

With PRDO addressing as our starting point, what API can
we offer tenants? We observe that, for the vast majority of
cloud tenants, the network is a means to an end: i.e., tenants
care that their application endpoints (i.e., VMs or containers)

1By which we mean an address from the address space the CP advertises
into the Internet’s routing infrastructure - e.g., [27] for GCP

Figure 1: Cloud addressing as it is done today (top) and our proposed
changes (circled, bottom). Black packets show the translation and
path of packets between VMs in the same virtual network while the
blue path shows an external connection using the VM’s public IP.

can communicate with each other with high availability, a
certain level of performance (e.g., latency, throughput), secu-
rity against unwanted access, and scalable mechanisms for
management. These are the goals that a tenant is trying to
achieve when they set up and manage a virtual network topol-
ogy with firewalls, links, and routers. Hence, we design an
API that allows tenants to express what they want the net-
work to accomplish, rather than how it does so. Moreover, we
note that the parameters that specify a tenant’s goals are as-
sociated with how endpoints – VMs/containers – experience
the network. Hence, our general approach is to assign PRDO
addresses to all tenant endpoints and then provide tenants a
high-level API that associates SLOs (for availability, secu-
rity, and performance intents) with these endpoints (or groups
of endpoints), thus completely eliminating today’s low-level
"links and boxes" abstractions.

We do not require that CPs cooperate to implement the API,
nor even that all CPs adopt the API. Likewise, CPs don’t have
to implement identical versions of the API. Converging on a
single API across all CPs would certainly be ideal but, even
if each CP adopts their own flavor of the API we propose,
tenants will benefit from the simplification in configuring that
CP, and the high-level nature of the API will make it easier
to port deployments across clouds.

4 PRDO Addressing
In this section, we first review the addressing architecture
commonly implemented by CPs today (§4.1). This discussion
reiterates information published before [20,21,54] but distills



the aspects relevant to Invisinets. We then discuss how this
addressing infrastructure can be used to support Invisinets
(§4.2) and the security implications of the same (§4.3).

4.1 Addressing in Today’s Clouds
A cloud provider’s infrastructure involves a few different
address spaces. Public IP addresses (PIPs) are drawn from
public prefixes that the CP advertises into the Internet at
large. CPs vary in the details but, generally speaking, a packet
destined to a PIP will be delivered to a specific datacenter or
region in the CP’s global infrastructure.

In addition, each cloud datacenter has a private address
space of “direct” IP addresses (DIP) – a DIP is the actual IP
address of the physical server and the basis for routing within
a datacenter fabric. It is used internally to the CP and is never
exposed to the tenant, providing a layer of indirection and
allowing the CP to place/move VMs as needed.

Finally, at the virtualization layer, tenants see a virtual IP
(VIP) for their VM or endpoint. A VIP may be public or
private (a VM may have both) but crucially is not actually
assigned to the server and therefore is not routable in the
datacenter fabric. Instead, it is used at the tenant-layer for
virtual network-level routing, etc. For packets sent between
two VMs with private VIPs in the same virtual subnet (Ai
addresses), the source and destination fields are translated
in the vswitch/NIC at the VMs; the vswitch/NIC translates
from the private VIP address space to the corresponding DIPs
(Ai ↔ Di) [25, 54] as shown in Figure 1 with the blue series
of packets. The fabric only understands how to forward traffic
with DIPs and is unaware of the tenant address space (giving
the virtualized layer full flexibility in assigning addresses).

Endpoints with public VIPs are assigned an IP address
drawn from the CP’s public address space (Pi). However, this
address is not directly assigned to the VM. Instead, any in-
coming traffic destined to Pi is first routed through a software
load balancer (SLB) in the datacenter (see Figure 1 black
series of packets) that maintains a binding from Pi to Di.2 The
mapping between public VIPs and DIPs are installed when
the public IP is provisioned and associated with an endpoint.
Thus the SLB advertises all public VIPs under its control
and translates incoming traffic to the endpoints DIP to route
to the endpoint. For traffic exiting the VM, no translation is
necessary as the source is the public VIP and default routes
are used to exit the datacenter.

Thus in the terminology introduced earlier, all PIP ad-
dresses (including ones assigned as public VIPs) act as PRDO
addresses, requiring explicit SLB and vswitch/NIC configura-
tion before packets can be delivered to an actual endpoint.

4.2 Applied to Invisinets
The core proposal in Invisinets is that we will no longer use
private VIPs at all and instead give all endpoints a public VIP

2The SLB is often implemented as a distributed scale-out software system
capable of high-speed address translation [21, 54].

(Figure 1). Thus, tenant addresses will be drawn from a CP’s
public IP address space and we will leverage the CP’s PRDO
addressing infrastructure to ensure that a tenant’s endpoints
are not exposed to unwanted access.

To leverage existing CP solutions, we propose a division
of labor in which tenants specify permit lists: for each end-
point Pi, this is the list of other endpoints that are allowed
to communicate with Pi (with the possibility for extension
parameters for more specificity) .3 The CP is responsible for
enforcing this permit list: ensuring that only traffic explicitly
permitted to access the endpoint may do so. Any packet not
cleared by the permit list should be dropped.

Ensuring these semantics to the tenant requires minimal
changes to the CP’s infrastructure. The CP simply programs
SLB bindings for external connections only as necessary
based on the tenant’s permit list. We use “external” to mean
outside any boundary necessary to meet the CP’s addressing
constraints; e.g., DIPs may only be unique within a region,
therefore “external” connections are those spanning beyond
the region. We call the boundary within which a DIP is unique
the DIP scope. The DIP scope determines when an address
must be added to the SLB bindings as any connections to end-
points outside the DIP scope may be in overlapping address
space and will not be reachable without address translation.

To support this in the datacenter fabric, we first modify
the address translation for traffic which typically uses private
VIPs (the blue process in Figure 1). Now, packets are trans-
lated from the public VIP space to the corresponding DIPs
in the vswitch/NIC. Second, the SLB translation process for
packets incoming from external endpoints must be slightly
modified. The translation between public VIPs and DIPs in
the SLB remains the same, but the time at which the SLB
binding is installed is changed. Instead of installing when the
IP is associated with the VM, the binding is only instantiated
when the VM’s permit list allows traffic external to the data-
center. When no mapping exists for an incoming packet, the
SLB simply drops the traffic (as it does today). This provides
an initial coarse layer of protection for PRDO endpoints. Im-
portantly, each endpoint’s permit list is enforced at the host
as well, so dropping at the SLB is not strictly necessary but
offers some defense-in-depth for endpoints.

We assume that in order to support this model, the CP
can allocate addresses arbitrarily as is convenient (e.g., the
CP isn’t required to assign addresses from predetermined
prefixes of the address space). The tenant should not expect
any particular addressing scheme for the IPs they are assigned.
Thus, our API takes reachability (L3) between endpoints as a
given from the CP and builds directly on the underlay routing
and address translation rather than requiring every tenant to
reconstruct their own L3 network.

3For convenience, we will introduce the ability to specify groups of
endpoints in §5.



4.3 Security Implications
We argue that Invisinets does not fundamentally alter the
security posture of either the tenant or CP.

Consider first the public exposure of a tenant’s endpoints.
Today, the tenant has 3 types of endpoints: (1) public (e.g.,
a VM associated with a public IP), (2) “semi-private ” (e.g.,
a VM with only a private VIP, but behind a VPN/NAT that
restricts access to the VM), and (3) private (e.g., a VM with a
private VIP). Under our proposal, nothing changes for end-
points in (1). For endpoints in (3), they are equally unavailable
to outside connections in Invisinets (since no SLB bindings
will be programmed for them). 4 For endpoints in (2), access
is still limited however Invisinets does change how this access
control is implemented. In Invisinets, access to a semi-private
endpoint is restricted by the permit list and SLB bindings;
effectively, we’re replacing the tenant’s VPN/NAT with the
CP’s SLB/NAT infrastructure.5

This change does however, modify the trust boundary be-
tween the tenant and the CP. Today, the tenant trusts the cloud
provider to implement the network architecture they specify
faithfully. In Invisinets, the tenant trusts the cloud provider
to construct the necessary network architecture to achieve
their connectivity requirements and accordingly trusts that
any connectivity not explicitly permitted will not be enabled.

From a CP viewpoint, a potential concern is that the larger
number of allocated public IP addresses increases the risk or
impact of a DDoS attack on their infrastructure. We found
that this was not a concern for CPs because they currently
advertise entire IP prefixes, independent of what subset of
those addresses are actually allocated: e.g., Azure advertises
>1.4 · 1020 [46] while GCP advertises > 7.1 · 1026 IPv6 ad-
dresses [27]. Any of these addresses can be used as the target
of a DDoS attack and this remains unchanged with Invisinets.

Furthermore, CPs today deploy cloud DDoS mitigation
systems [45] to thwart high-volume traffic attacks targeting
a specific endpoint (since these might overwhelm specific
links in their WAN). Notably, only one public IP is sufficient
for an attacker to attempt such an attack and hence Invisinets
does not materially increase the likelihood of such attacks. A
final concern might be attacks that spread traffic over multiple
endpoints. However, such attacks are already possible today
(given the large advertised address space) and handled through
filtering at the destination datacenter where SLB mappings
reveal what traffic is valid. In such cases, attack traffic is
carried over the CP’s wide-area links, however the extensive
use of load-balancing in these networks is effective in this case
(since the attack comprises many smaller flows) and hence
the increase in backbone traffic volume is not problematic,
akin to a general increase in valid traffic volume.

4However, if a private endpoint today is in a virtual network which spans
across more than one DIP scope, it would be installed in the SLB.

5In some cloud SLB implementations [21], tenant-level NATs are imple-
mented in the SLB. In this case, the only change is that each endpoint has its
own binding in the cloud SLB.

API Description
request_eip(vm_id) Grants endpoint IP
request_sip() Grants service IP
bind(eip, sip) Binds EIP to SIP
set_permit_list(eip, permit_list) Sets access list for EIP
annotate(eip, middlebox) Adds middlebox to EIP’s traffic
set_qos(region, dest, bandwidth) Sets (region, dst) BW allowance
set_qos_class(class, five_tuple) Defines tenant QoS class
tag(eip, tag) Associates endpoint with tag

Table 1: Proposed cloud tenant network API.

5 API Design

In this section, we outline the Invisinets API and and describe
how it achieves each of its goals. The design implications for
each piece of the API are discussed as necessary. We expect
the listed arguments to be the minimum required parameters
and deliberately leave room for cloud providers to differen-
tiate their services with additional extension parameters. A
complete list of our proposed API is shown in Table 1.

5.1 Connectivity

Rationale. As explained in §3, we modify the CP infrastruc-
ture to support PRDO addressing for all endpoints and enable
trivial connectivity. By giving all endpoints publicly-routable
IP addresses, we can abandon the virtual network altogether.
Accordingly, tenants are not obligated to construct the net-
works to facilitate communication outside of a given virtual
network, as is required by the inherent isolation of the virtual
network abstraction.
API. Connectivity between the tenant’s VMs/storage end-
points/etc. in the same cloud, across clouds, and to their on-
prem network (provided they expose public endpoints) is
trivially achieved given that tenant instances have public IP
addresses. Thus our basic request_eip API allows the ten-
ant to request and receive an endpoint IP address (EIP) for
each of its instances. A tenant must be prepared to treat its
EIP as a flat address with no assumptions about whether its
addresses can be aggregated, drawn from certain prefixes,
etc. This gives providers flexibility in assigning addresses
from their overall pool (e.g., to maximize the ability to aggre-
gate for routing, etc.) and with effective tagging mechanisms
should not affect tenants in any way (since tenants are no
longer configuring routing with mechanisms such as BGP).
Design. As discussed in §3, the infrastructure necessary to
support PRDO addresses requires only minor modifications
to the SLB in the datacenter fabric and otherwise the existing
vswitch/NIC functionality is sufficient. When an external
endpoint is added to a permit list, only then is the EIP of the
local endpoint installed in the SLB.

IPv6 will be necessary to support PRDO-only addressing
as the IPv4 address space is too small to feasibly give all
cloud endpoints an address. Since these addresses will be
allocated arbitrarily from the tenant’s perspective, grouping
mechanisms will be critical to managing a flat address space.
We address this need directly in §5.5.



5.2 Availability
Rationale. Tenants often build highly-available services us-
ing multiple backend instances. The service is associated with
a service IP address (SIP) and an in-network load balancer
maps traffic destined for SIP to an available backend instance.
We’d like to support this use-case without requiring that ten-
ants engage with the lower-level details of load balancers.
API. We allow tenants to request a SIP and introduce a bind
API that allows tenants to associate EIPs with a SIP (Table 1).
This SIP address is globally routable, however, traffic destined
for the SIP is routed / load-balanced across the EIPs bound
to it and we place the responsibility of load balancing on
the cloud provider. Hence, the bind call allows the tenant
to inform the cloud provider of how load-balancing should
be implemented, with optional parameters that guide load-
balancing policy (e.g., associating a weight with each EIP,
akin to weighted fair queuing policies).
Design. Requesting SIPs can be supported today and is in
fact somewhat similar to service mesh integrations with cloud
load balancers today [29]. The bind call only requires changes
to the interface tenants use request load balancing services.

5.3 Security
Rationale. In §4.3, we addressed the security implications for
the network fabric. We now discuss how tenant-level security
concerns are addressed in the Invisinets API. We assume the
tenant is primarily concerned about service-level attacks and
targeted resource exhaustion. To address potential attacks, our
architecture will implement tenant-level security in two main
pieces: middlebox annotations on endpoints and network-
level permit lists. Both of these are specified by the tenant but
implemented/enforced by the CP.

Today, tenants protect their services through a combina-
tion of per-VM/virtual network permit lists and by deploying
various security appliances such as first-party firewalls and
third-party DPI systems (e.g., [52]). Network permit lists
are specified by the tenant but implemented by the cloud
provider (typically through filtering in the vswitch/NIC at
each endpoint) while security appliances may be deployed
and managed by the tenant. Together, these mechanisms pro-
tect the tenant from both service-level attacks (e.g., intrusion
or exfiltration attacks caught by DPI firewalls or proxies) as
well as resource exhaustion attacks that specifically target the
tenant (e.g., overwhelming the tenant’s service).

Ideally, we would remove middleboxes from the cloud of-
ferings altogether and instead implement security measures
in an API gateway in the service itself [6, 63]. However, we
acknowledge that some applications may have strict secu-
rity requirements that demand middleboxes and therefore we
expand our API to include those available today.
API. The per-host tenant-level permit lists can be naively im-
plemented at the endpoint with the access lists used today such
as Network Security Groups in Azure. To the tenant, our API

will look similar to these access lists. To permit from another
host, the tenant simply uses the set_permit_list function to
update the given endpoint’s allowed hosts.

The tenant may use the annotate API to apply the desired
middlebox to an endpoint’s traffic. The cloud provider is re-
sponsible for the instantiation and placement of the middlebox
and the routing necessary to direct the relevant traffic. The
tenant will provide the type of middlebox (could be their own
VM as seen with some third-party network appliances today)
and configure it as done today. Additional parameters to the
annotate API could specify a subset of the traffic to be sent
through the middlebox (i.e., by destination) or specify the
ordering of a series of middleboxes.
Design. We propose a two-pronged approach to protect ten-
ants from attacks. First, we allow tenants to continue their
use of cloud middlebox offerings by annotating endpoints.
Therefore, they may continue to use their DPI firewalls, ID-
S/IPS appliances, etc. as they do today. However, the tenant
does not have to manage the placement of these appliances in
their networks and route relevant traffic. The cloud provider
will install the necessary routing in the vswitch/NIC. By in-
cluding security-focused middlebox functionality in our API,
tenants can continue their defense-in-depth best practices as
they do today. Secondly, we propose that the cloud provider
protect the tenant from network-level resource exhaustion
attacks by reusing the same infrastructure it already imple-
ments to protect itself. In addition to the above, we assume the
cloud provider will continue to enforce the tenant’s permit list
through filtering at the endpoint’s vswitch/NIC. These permit
lists are essentially available today as NSGs (Azure) and Se-
curity Groups (AWS), so we adopt the underlying architecture
unchanged.

5.4 Performance
Rationale. Today, cloud providers offer rather limited net-
work performance/QoS guarantees. Tenants are generally
not promised any minimum bandwidth and are instead throt-
tled above a certain threshold. However, some tenants seek-
ing high availability and reliability may reserve a dedicated
link [7,28,44] which the tenant must then provision, configure
and operate as discussed in §2.

The abstraction of a dedicated link is fundamentally at odds
with our goal of a high-level endpoint-centric API since a link
implies a topology that incorporates it and routing that steers
select traffic over the link. Our goal is to avoid this complexity
and hence we instead ask: can we approximate the benefits of
these dedicated links without obligating the tenant to worry
about the many details they do today? 6

The point-to-point link abstraction offered today requires
coordination between the entities on either end of the link and

6One might ask whether the performance of dedicated links justify their
cost and complexity in the first place. In Appendix 11, we present early
results showing that these links may not always offer a performance benefit
but leave a full evaluation to future work.



is not offered directly between clouds. To avoid the coordina-
tion and low-level configuration of direct links, our proposal
is to approximate the effect of dedicated links by guaranteeing
some amount of dedicated egress bandwidth to another do-
main to tenants who purchase it at a predefined granularity (in
this paper, we will assume regional granularity). We hope that
since clouds already have an incentive to be highly connected
with one another, this guaranteed bandwidth when leaving a
region is enough to roughly estimate the effect of dedicated
links stitched together at a colocation facility. With this over-
all goal, we then ask how to provide such an abstraction to
the tenant as a service.

The service model we assume is in terms of bandwidth
reservations, rather than point-to-point links with a specified
bandwidth as is available today. Tenants will specify to the
cloud provider their desired amount of dedicated egress band-
width to another domain (e.g., another cloud) for some region.
Then, we seek to make the traffic management necessary to
use this link as simple as possible by allowing tenants to de-
fine traffic classes and map them to strictly ordered priorities.
These priorities will define which traffic gets to use the dedi-
cated bandwidth if/when the aggregate traffic for the tenant in
that region is greater than the allowed dedicated bandwidth.
API. Ultimately, the tenant will define their own traffic
classes (in terms of five-tuples). The CP will then label traffic
as necessary and map these classes to their own high (“dedi-
cated”) and low (“best-effort”) priority classes in the fabric
of the datacenter. To the tenant, reserving the regional aggre-
gate egress bandwidth will simply require calling set_qos

and setting the priority of traffic via set_qos_class.
Design. Our set_qos API is based on the assumption that
clouds are reasonably well-connected with one another so
that dedicated egress bandwidth between a cloud region and
another domain can approximate a direct link between the two
clouds. If not, congestion between the clouds could impact the
available bandwidth beyond the control of either CP. Further,
we require that the CP can classify egress traffic into reserved
bandwidth packets and best effort-packets. Reserved-class
packets are guaranteed to not experience congestion on egress
(up to their reserved bandwidth) while best-effort may.

In offering the set_qos API, the CP has two primary goals:
(1) enforce that the tenant does not consume more than its
aggregate egress guarantee and (2) make it easy for the ten-
ant to use all of their promised bandwidth without requiring
low-level traffic engineering (as is required today to utilize
dedicated links). Since the bandwidths are offered at a per-
tenant, per-destination-domain, per-region level, the CP must
monitor usage across multiple endpoints in a region and en-
force the cumulative bandwidth limit at each endpoint. In
doing so, there will be a tradeoff between reactivity and cost
as enforcing the limit strictly will impose higher overheads.
Scalability is also a challenge as performing distributed rate
limiting across all tenant endpoints (in the 10s of millions)
must be done with minimal resource consumption.

Figure 2: QoS enforcer example. The tenant sends traffic in two
classes: red (dashed) and orange (solid), prioritized in that order. The
reserved egress bandwidth is 10Gbps.

Our approach to enforce the set_qos API is as follows: we
assume that tenants define traffic classes each with a different
priority level and the cloud provider marks their traffic accord-
ingly. The cloud provider then determines whether a particular
traffic class (or what fraction of it) should be assigned reserved
vs. best-effort bandwidth based on the tenant’s current traffic
demand aggregated across all its endpoints (collected at the
host and reported to the controller). This mapping between
tenant traffic classes and reserved vs. best-effort bandwidth is
computed by a per-tenant QoS controller. The QoS controller
communicates the appropriate mappings to a QoS enforcer
module at each endpoint (implemented in the NIC or vswitch)
which accordingly marks egress packets and rate limits re-
served priority flows according to their current bandwidth
allocation. Finally, the egress router classifies packets based
on these markings and (priority) schedules them accordingly.
Hence, the additional infrastructure that our API imposes on
the cloud provider is the per-tenant QoS controllers and the
QoS enforcer modules (Figure 2).

Using per-tenant controllers mitigates potential scaling is-
sues since each controller need only scale to the number of
endpoints per tenant (vs. all endpoints) per region, thus divid-
ing the regional rate limiting into reasonably-sized problems.

Figure 2 shows an example of this design for a single tenant.
The tenant has two traffic classes, red and orange, which are
prioritized in that order. The communication between only
one enforcer and the controller is shown for clarity, though
each VM would participate. The controller determines that the
red class does not use the full egress reservation and allows
1/3 of the orange traffic into the dedicated class. For a more
formal discussion of the QoS controller, see Appendix 12.

This model requires cloud providers to engage with an un-
derlying capacity provisioning problem (i.e., how does one
ensure that the total reserved bandwidth across all customers
is actually there?). For the purpose of this API, we assume
that the CP has some policy for installing and allocating band-
width, but we do not address the specifics of the policy.

5.5 Grouping
Rationale. One noticeable advantage of today’s abstractions
over a purely endpoint-centric view is that virtual networks
can serve as a helpful and simplifying grouping mechanism
(e.g., to apply an identical policy or configuration to all VMs



running a Spark job). Without a method to group hosts, rea-
soning at an endpoint-level may be difficult, especially since
tenants are not given EIPs from a continuous address space.

We support the convenience of grouping via tags that can be
associated with EIPs such that tenants may use tags in place
of a list of EIPs in permit lists. This ensures cleaner semantics
for the tenant while the cloud provider can “compile” these to
IP addresses for filtering on packets at the end host associated
with the permit list. Similar features, called service tags, are
available today for Network Security Groups [48] while AWS
offers general purpose tagging across resources [59]. Our use
of tags is limited to EIPs as they are known across clouds
while specific resources are not.
API. To provide the benefits of grouping, we adopt a method
for tagging as a means of convenience for tenants in our API
with tag. Here, tenants may associate an EIP with a given tag
as shown in Table 1. Tags can be used in other APIs such as
set_permit_list in place of addresses.

6 Implementation
To demonstrate the feasibility of our proposed API itself,
we have developed an implementation using existing APIs
for AWS and Azure to expose our simplified API ; i.e., it
effectively builds a shim layer on top of existing APIs. As
discussed in earlier sections, most of our API requirements
map onto existing abstractions and hence can be implemented
in a straightforward manner. The key new addition is the
QoS API for which we provide a partial implementation as
described below. This approach – i.e., building on top of
existing APIs – is unfortunately deeply tied to specific cloud
implementations. In the long term, we hope/expect the shim
layer to thin over time as clouds provide the Invisinets API as
a first-party implementation.

Implementing the QoS API requires three infrastructure
components: (i) per-host enforcement modules, (ii) QoS con-
trollers, and (iii) modifications to egress routers to appropri-
ately classify and prioritize traffic. We built a prototype of the
first two components but lack the access to realize (iii); in this
sense, our implementation of the QoS API is only a partial
one. At the same time, such classification and priority schedul-
ing is standard on high-end routers and hence we anticipate
no problem in realizing the API more fully in production.

For the enforcer module, the rate limiting is done through
Linux tc operations and a bpf filter implemented as a bcc
program [3]. This approach was chosen to fit easily into any
host-based approach, though in a production deployment we
expect this logic would reside in the hypervisor or virtual
switch [25]. The bcc programs monitor outgoing traffic vol-
umes on a per-traffic-class basis and reports to a reporting
process on the host. The host sends usage to a per-tenant
controller via RPCs [31]. The controller calculates per-host
mappings to each traffic class and reports back to all hosts
which reported in the last time interval. The host process then
inserts this data into bpf tables for the rate limiter to observe.

The rate limiter classifies traffic based on the tenant to cloud
provider class mapping. The cloud provider classes corre-
spond to classes in a tc hierarchical token bucket which rate
limits the egress traffic from the node.

7 Evaluation
In our evaluation, we focus on answering two questions: (i)
to what degree does Invisinets simplify a tenant’s experience
when networking their workloads? and, (ii) is implementing
the Invisinets API technically feasible for cloud providers?

We evaluate simplicity using a two-pronged approach. First,
we consider three sample tenant deployments and compare
the complexity of implementing each deployment using In-
visinets versus doing so with existing solutions (§7.1). This
approach allows us to do a deep-dive evaluation for specific
deployment scenarios and solutions. For a broader view on
tenant deployments, we also analyzed 677 publicly available
deployment scenarios as captured by their Terraform files on
GitHub and quantify the extent to which existing network
abstractions contribute to the overall setup and configuration
complexity that a tenant faces, and the extent to which In-
visinets can remedy this complexity (§7.2).

When considering the feasibility of implementing In-
visinets, we focus primarily on scalability. This is because, as
discussed earlier, cloud providers already implement (close
approximations for) the individual building blocks needed to
implement our Invisinets API – e.g., address translators, load
balancers, rate limiters. Hence, the main question is whether
extending their use of these components to a larger fraction
of their tenant pool will create new and problematic scaling
bottlenecks. Thus, in §7.3, we evaluate scalability using a
combination of system microbenchmarks and deployment
statistics from cloud providers.

7.1 Evaluating Simplicity via Case Studies
Methodology. We compare the complexity of tenant net-
working using Invisinets versus existing solutions. For the
latter we consider: (i) a DIY tenant that writes scripts directly
atop existing "first-party" cloud APIs, and (ii) Aviatrix [12]
as representative of third-party multi-cloud solutions.7

Given that there is no best practice for measuring sim-
plicity, we propose a metric which we believe is reasonable,
though we do not claim that it perfectly captures all notions
of complexity. We measure simplicity in terms of the number
of network components that the tenant must consider within
three main categories: network boxes, links, and configuration
points. Network boxes refers to device abstractions such as
transit gateways, VPN devices, firewalls, and so forth. Links
refers to various forms of virtual link abstractions including
dedicated egress links (e.g., Azure ExpressRoute [44]), vnet

7As mentioned earlier, Aviatrix offers tenants a management layer built
atop per-cloud abstractions and optimized cloud appliances. Tenants view
their multicloud deployments through a “single pane of glass”, but must still
be fluent in per-cloud building blocks as well as Aviatrix-specific constructs.



peerings [42], and private internal links [47]. Finally, config-
uration points counts any abstraction that exposes network
configuration parameters for the tenant to consider. We count
the number of configuration points (e.g., a firewall) rather
than lines of code or configuration (e.g., number of firewall
rules) since the latter can often be arbitrarily scaled in our
scenarios and hence may be misleading.

We further clarify certain aspects of how we account for
configuration points. First, every box is also counted as a
configuration point: e.g., a gateway is both a box (must be
placed in a topology) and a configuration point (must be con-
figured with routes, tunnels, etc.). Second, while boxes are
always configuration points, the inverse is not true: e.g., ab-
stractions such as virtual networks or subnets are not boxes but
do require configuration and hence are counted as configura-
tion points. Invisinets in particular has multiple configuration
points but few boxes so both measures are needed for a fair
comparison. Finally, we ignore security groups/permit lists
and endpoint IP addresses when counting configuration points
as these are present in all solutions and depend on the number
of endpoints which can be scaled arbitrarily.

We compare solutions using three case studies: one is a
validated design published by Aviatrix [11] and the other
two were defined by us to represent extremes of simple vs.
sophisticated deployments.
Case Study 1: A Simple Tenant Network. We start with
a rather contrived, simple deployment in which a single VM
in one cloud (Cloud A) must communicate with a service in
another cloud (Cloud B) in a shared address space as shown
in Figure 3a. The service in Cloud B uses two VMs which are
load balanced. Table 2 shows the complexity of implementing
this scenario with each of the three solutions we consider.

Metric First-Party Aviatrix Invisinets
Boxes 3 (VPN, LB) 3 (GW, LB) 0

Config. Point 7 (vnet, subnet, VPN) 7 (vnet, subnet, VPN) 1 (SIP)

Table 2: Complexity analysis for a Simple Tenant Network. In
parentheses, we list the "top three" abstractions in terms of their
contribution to complexity (see Fig. 3 for abbreviations).

We see that even this simple scenario incurs non-trivial
complexity with existing solutions. With the DIY approach,
tenants must still consider virtual network gateways, a load
balancer, backend pools, local network gateways, route prop-
agation parameters, and more, leading to a total complexity
of 10 network components. Aviatrix is similar, though it uses
2 Aviatrix gateways in lieu of the first-party VPN gateways.

Invisinets, however, completely eliminates the virtual net-
work layer and instead requires just one configuration point
(the SIP in Cloud B), allowing the deployment to be expressed
in just 9 lines of code as shown below:
e i p 1 = c l o u d _ a . r e q u e s t _ e i p ( vm1_id , name="vm1" )
e i p 2 = c loud_b . r e q u e s t _ e i p ( vm2_id , name="vm2" )
e i p 3 = c loud_b . r e q u e s t _ e i p ( vm3_id , name="vm3" )
s i p = c loud_b . r e q u e s t _ s i p ( name=" s e r v i c e " )
b ind ( e ip2 , s i p )
b ind ( e ip3 , s i p )

s e t _ p e r m i t _ l i s t ( e ip1 , [ e ip2 , e i p 3 ] )
s e t _ p e r m i t _ l i s t ( e ip2 , [ e i p 1 ] )
s e t _ p e r m i t _ l i s t ( e ip3 , [ e i p 1 ] )

By contrast, our DIY script using the AWS and Azure
Python APIs requires over 45 lines of code (snippets shown
in Appendix 13) even assuming IPs and the underlying virtual
network have already been provisioned.
Case Study 2: (Aviatrix) Multi-Region Design. We con-
sider a design from Aviatrix [11], as seen in Figure 3b. This
deployment involves 3 virtual networks running different ser-
vices in two different cloud regions. They are connected to
one another via a transit virtual network which contains fire-
walls for security. These transit virtual networks also contain
direct links to on-prem datacenters. Table 3 summarizes the
complexity costs in implementing this design.

Metric First-Party Aviatrix Invisinets
Boxes 4 (GW, FW) 18 (GW, FW) 2 (FW)
Links 9 (peering, DL) 2 (DL) 0

Config. Point 29 (peering, subnet, vnet) 36 (GW) 2 (egress BW)

Table 3: Complexity analysis for the Aviatrix design. See Fig. 3 for
abbreviations.

We see that, compared to our first case study, complexity
rises significantly with both the DIY and Aviatrix solutions.
The majority of this complexity comes from the gateway and
virtual network peering abstractions. Interestingly, Aviatrix
incurs greater complexity than a DIY implementation due
to its recommended redundant gateways, though first-party
peerings cannot be redundant. In contrast, Invisinets requires
only 4 network components (egress reservations to approxi-
mate the direct links and middlebox annotations for firewalls),
which represents a more than 90% reduction in complexity
relative to the DIY and Aviatrix solutions. Creating this de-
ployment with the available first-party APIs would take over
45 lines of code even assuming all instances and their IPs
have been provisioned and the out-of-band coordination to
set up the direct links has been performed. In addition, we
do not count lines only defining configuration, otherwise the
script is well over 200 lines. A significant portion of this code
sets up the necessary routes to get traffic from each virtual
network to the appropriate firewall and/or gateway.
Case Study 3: A Heterogeneous Tenant Network. Our
third scenario showcases a network deployment that involves
a range of connectivity requirements, as shown in Figure 3c.
This scenario is representative of virtual networks constructed
by larger cloud tenants, though we chose to scale it down
for understandability. For the sake of demonstration, in Fig-
ure 3c, the Azure network is depicted in some detail while the
GCP deployment is unrealistically simple. In this scenario,
the tenant’s cloud deployments in GCP and Azure are each
connected to the tenant’s on-prem datacenter via direct links
to an Internet exchange point where the tenant has reserved
a virtual router and an MPLS link to their datacenter. In the
Azure deployment, the ExpressRoute terminates at a VPN
gateway which must reside in its own subnet [49]. From there,
user-defined routes send traffic to the appropriate subnet or



(a) CS1: A simple ten-
ant network. (b) CS2: Aviatrix multi-region design [11]. (c) CS3: A heterogeneous tenant network.

Figure 3: Generalized (not taking the form of any particular current approach) network topologies for each case study. (LB = load balancer,
GW = gateway, FW = firewall, PL = private link, DL = Direct Link)

onto the ExpressRoute for egress traffic to GCP or On-Prem.
The other subnets in the virtual network contain VMs and a
private link to an Azure service such as storage on the left and
load-balanced VMs on the right. In another virtual network
in Azure, a VPN gateway tunnels to a branch office. Ingress
traffic is directed to a subnet containing a firewall which then
allows traffic to reach VMs or another private link to a Mi-
crosoft service. Table 4 summarizes the complexity costs in
this design. A script to create this deployment (again, ignoring
instances, IPs, and some ExpressRoute setup) would require
over 80 lines of code. While coming in the form of many dif-
ferent components, achieving basic connectivity via gateways,
links, etc. continues to be the main source of complexity.

Metric First-Party Aviatrix Invisinets
Boxes 6 (GW, FW, LB) 6 (GW, FW, LB) 2 (FW)
Links 5 (DL, PL, MPLS) 5 (DL, PL, MPLS) 0

Config. Point 22 22 4
(vnet, subnet, GW) (vnet, subnet, GW) (egress BW, FW)

Table 4: Complexity analysis for the heterogenous tenant network.
See Fig. 3 for abbreviations.

7.2 Terraform Complexity
For a broader perspective, we now consider the impact of
Invisinets on a larger pool of deployment scenarios. Specifi-
cally, we evaluate the scope for simplification in the Terraform
files that a network administrator maintains. Terraform [32]
is a popular language for specifying cloud infrastructure as
declarative code directly using the first-party abstractions.
Methodology. We scraped GitHub for Terraform files cre-
ating virtual networks, selecting files that mention an AWS
VPC and omitting files that only defined Terraform variables
or outputs. For a scrape conducted on 9/15/2022, our filtering
yielded 677 files for analysis.8 We use these configurations
since they are publicly available but recognize that they may
not fully represent the tenant use-cases that Invisinets targets
(e.g., mid/large scale enterprises). We believe our analysis
could be easily repeated on large production deployments.
Results. We parse each Terraform file, identifying whether
a code block corresponds to a virtual network component.
Table 5 lists the components we identified and how often

8Github API search results are limited to the first 1000 results. Additional
filtering on returned files reduced the number further.

Virtual Network Component Occurrence Count Line Count
VPC 2,493 26,731

Route Table 1,839 13,317
Subnet 1,514 14,677

Security Group 456 9,704
Internet Gateway 445 2,802

Route 339 2,184
NAT Gateway 209 1,661
Network ACL 141 2,841

Transit Gateway 82 587
VPN Gateway 40 316
Load Balancer 22 207

Network Interface 16 123
VPN Peering Connections 5 27

Customer Gateway 4 58
VPN Route 2 10

VPN Connections 1 13

Table 5: Breakdown of Terraform lines removed (across all 677
scraped files) by virtual network component.

they occurred in our files.9 We also calculate the lines of
code within each of these code blocks and show the total
per-component line count in the last column of Table 5. Un-
surprisingly, VPCs are the most common component. Beyond
this, we see that abstractions used to establish basic connec-
tivity – e.g., Internet Gateway, Subnet, Route Table, Route
– constitute a significant fraction of the networking abstrac-
tions that an administrator must deal with. Moreover, even
complex routing abstractions such as Transit Gateways are
not uncommon. These findings thus support our thesis that an
approach such as Invisinets, which altogether eliminates the
need for virtual topologies and their routing configurations,
can substantially simplify networking configurations.

The lines of code identified in Table 5 can be viewed as
an upper bound on the lines of code that can be omitted
by using Invisinets. To evaluate whether this is a significant
portion of the overall Terraform configuration, Figure 4 shows
a histogram of the percentage of lines-of-code that can be
omitted from the Terraform files we consider.

While the fraction of omitted configuration lines may be
surprising, these resource definitions rarely carry information
critical to the four tenant goals around which the Invisinets
API is designed. Instead, many of these lines specify details
of unnecessary abstractions such as virtual networks and the
gateways required to reach external endpoints. (We show an

9We believe this estimate is approximately equivalent to the set of network
components (boxes, links, and configuration points) that we measure in §7.1.



Figure 4: Histogram of percent lines of Terraform resource files that
can be omitted with Invisinets API.

example of such a configuration in Appendix 14). Accord-
ingly, the streamlined Invisinets API does not require much
of this configuration.

We note that our estimates for omitted code in this section
are an upper bound since we do not account for the lines of
configuration that would be added by using Invisinets’s API.
Nonetheless, our evaluation in the previous section suggests
that Invisinets requires far fewer (90+% fewer) components
to configure and hence we expect to be left with significant
savings. Moreover, the permit lists that Invisinets requires
contain information that is necessary even without Invisinets;
e.g., in the form of VPN access lists, firewall rules, NSG
configurations, and so forth.

7.3 Scalability
As mentioned earlier, we focus on the scalability of the In-
visinets API. Implementing the Invisinets API implies change
along two main fronts: address management to support PRDO-
only addressing, and enforcing per-tenant egress bandwidth
reservations. We consider each in turn.
PRDO addressing. PRDO-only addressing changes the num-
ber of endpoints that are assigned public IP addresses and
hence a natural question is whether cloud providers have a
large enough public IP addresses to give one to every VM.
From discussions with Azure operators, we learnt that Azure
advertises over 1.4 · 1020 addresses in total [46] and hosts
O(10M) VMs. Thus we can safely conclude that Azure has
sufficient public addresses to support PRDO addressing. Simi-
larly, GCP has over 7.1 ·1026 advertised addresses in total [27],
presumably plenty to allocate to all endpoints.

The next scalability concern may be the impact on the ad-
dress translation infrastructure – specifically, the vswitch/NIC
and SLBs used to translate PRDO addresses to internal pri-
vate addresses and to enforce permit lists. Fortunately, the
PRDO-only infrastructure does not increase the number or
complexity of vswitch/NIC lookup operations, as every packet
is translated to DIPs even today. Similarly, in considering the
impact on the SLB, we note that Invisinets does not change
the number of internal endpoints that need to be reachable
from endpoints outside the cloud provider (defined as semi-
private addresses in §3) since this depends on the tenant’s
workload requirements rather than the addressing architecture.
Today, the bindings and permit-list rules for these endpoints
are programmed in per-tenant VPNs/NATs while Invisinets
implements the same in the cloud provider’s SLB. Since
cloud SLBs [21, 54] are already designed for elastic horizon-

Figure 5: CPU utilization of QoS controller for different reporting
intervals over 5 experiments. The report collection (solid) is the
bottleneck over aggregation and reporting (dotted).

tal scaling, we do not anticipate any scaling challenges due to
semi-private addresses.
QoS Enforcer. Invisinets adds per-tenant, per-region QoS
controllers to a cloud provider’s infrastructure. We now bench-
mark the QoS components of our implementation to demon-
strate that these QoS controllers could reasonably scale in a
production setting. Our implementation consumes additional
network bandwidth for communication between the QoS con-
troller and enforcer modules. (The volume of tenant traffic
remains unchanged with only ToS fields modified to reflect
the class of traffic.) Using 32 traffic classes (chosen to be
expressive), we record a worst-case overhead of only 800
bytes per host in one reporting interval for one reservation.
For a VM with a 5 Gbps link, communication with the QoS
controller consumes less than 0.00001% of its link bandwidth
when reporting at 10 second intervals. At the QoS controller,
this overhead is n×800 bytes per interval where n is the num-
ber of VMs per tenant per region. Discussions with a major
cloud provider CP−X revealed that, for their deployments,
n is under 50,000 per region in the worst case, and O(10) on
average. Hence, for a 10 second reporting interval, the total
bandwidth consumed at the QoS controller is around 32Mbps
in the worst-case and far lower for average tenant sizes.

Next, we measure the CPU utilization at our QoS controller
for increasing numbers of reporting hosts, shown in Figure 5.
Our QoS controller is comprised of two main processes: a
gRPC [31] server to collect bandwidth reports and an aggre-
gation process to calculate the mapping and report back to
hosts. We run our QoS controller on a t3.small instance in
AWS with 2 vcpus, 2 GB of memory, and 5 Gbps bandwidth,
chosen to ensure that network capacity is not a bottleneck.
One hundred t2.small instances were used as hosts, with many
host processes per instance. As shown in the figure, stress-
ing our 2vCPU instance requires 1000s of reporting hosts.
We believe this is a reasonable expectation for region-scale
deployments since the average number of VMs per tenant
is O(10). Depending on the interval, with enough hosts, the
collection process cannot keep up with incoming reports at
which point the controller size (i.e., vcpus) can be scaled
as necessary. Scaling up to support a tenant with potentially
millions of hosts in one region would pose an additional chal-
lenge in aggregating bandwidth measurements; we leave that
challenge to future work.

Finally, we consider the total resource consumption due



to QoS controllers (across all tenants). In Azure, there are
roughly an average of 16,000 tenants in each region. Accord-
ingly, we expect the QoS enforcer to consume fewer than
1,600 cores in each region on average (since the total utiliza-
tion for 100 hosts and 5 s intervals is <10%).

Despite the additional packet-processing logic due to the
enforcer, no significant overheads are seen in processing host
traffic. We measured the latency and throughput of outbound
traffic from a host with the QoS enforcer enabled and disabled.
Neither metric demonstrated a noticeable overhead. Through-
put measurements using iperf [1] between two t2.medium
instances for 10 second flows produced an average of 64.9
Mbps across 100 flows with the rate limiting (though set to
allow many Gbps to not interfere) and 64.8 Mbps without.
Latency was tested with 200 pings to a remote host. With
the rate limiter enabled, the average was 0.46 ms (σ = 0.12)
while the average was 0.48 ms (σ = 0.258) without it.

Thus we conclude that Invisinets’s QoS infrastructure in-
troduces little overhead for cloud providers.

8 Limitations
We acknowledge that Invisinets may not satisfy infrastructure
requirements for all cloud tenants. Despite the layers of protec-
tion from the cloud provider, the tenant may deem public IPs
to be an unacceptable risk for their endpoints. While addresses
in Invisinets are default-off, this choice removes the layer of
isolation provided by virtual network private address spaces.
We note, however, that default-off semantics are present in
both Invisinets and today’s virtual network abstractions. Only
the placement of these parameters differ (e.g., endpoint permit
list vs. gateway rules). In addition, the workload may have
security requirements defined in terms of today’s network-
ing abstractions. Accordingly, we do not expect this interface
to appeal to all tenants and target specifically cloud-native
applications.

As mentioned in 5.4, our QoS API’s ability to simulate the
effects of a direct link is dependent on the level of connectivity
between the clouds. This assumption may be particularly
precarious in areas with smaller cloud footprints.

Since our primary goal with the Invisinets API was to sim-
plify the tenant interface, our evaluation is inherently limited.
Complexity is a multifaceted issue and cannot be completely
captured in any one metric. We proposed a variety of metrics
to evaluate simplicity as fairly as we could, though the values
are not necessarily exact.

9 Related Work
We build on the extensive literature on cloud and network
virtualization [20, 24, 53, 54, 60]. As mentioned in §5, most
of our API leaves this underlying architecture unchanged or
extends it in relatively straightforward ways.

Distributed rate limiting has also been extensively stud-
ied [37, 39, 56, 58, 64]; e.g., with work on optimizing end
host traffic shaping [58, 64]. Systems such as [39, 56] make

network-wide rate limiting decisions similarly to the model
we adopt, though [56] primarily seeks to limit traffic aggre-
gates rather than provide a minimum guarantee. Such guaran-
tees are provided by [40] with strategic resource placement
while [37] modifies the end host networking stack.

We take the large body of work in network verification
[14, 23, 26, 36, 38] as evidence of the overwhelming man-
agement complexity in networking. While verification has
focused more on datacenter environments, virtual networks
suffer similar complexity since they use similar abstractions.
Generally, compiling high-level network intents into low-level
device configs remains difficult and error prone [15].

This paper joins others in advocating a forward-looking
view of cloud networking though prior proposals focused
on performance guarantees [13, 50, 51] or declarative con-
trol [16] rather than the simplification we target. In [4], a
platform to unify cloud services is developed by creating
a substrate infrastructure across clouds. The vision in [61]
takes the extreme stance of proposing a unified interface for
all clouds. Invisinets can be viewed as an instantiation of their
vision for networking, though we focus less on unification
and instead hope that simpler APIs across clouds will result
in some homogenization over today’s highly-siloed APIs.

10 Conclusion
To simplify networking for cloud tenants, we proposed a
declarative and endpoint-centric API which takes L3 connec-
tivity as a given and removes the burden of deep networking
knowledge from tenant operators. We acknowledge that our
model may not initially meet the requirements of all tenants.
However, our proposed API can coexist with existing abstrac-
tions and, in fact, can provide a spectrum of simplicity where
deployments may include both today’s building blocks as
well as our proposed architecture. Our API requires consid-
eration of fewer network components and obviates the need
for network topologies to be constructed at all. Supporting
this simple API requires minimal infrastructural changes to
cloud datacenters and the new systems should be easily scaled.
We believe the Invisinets API for virtual networking follows
the evolution seen in cloud compute and storage from virtual
replicas of physical components to higher-level services.
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Appendix
11 Benefits of dedicated links.
Further, we conducted a small experiment to determine the
benefit of these dedicated links. We provisioned an Express-
Route from Azure in Northern California to a colocation fa-
cility in Silicon Valley and connected it to Direct Connect to
AWS in Northern California. A diagram is shown in Figure 6.
Both dedicated links were 50Mpbs and the virtual router in the
colocation facility can handle up to 500Mbps. In parallel to
this dedicated connection between clouds, we connected two
hosts in each deployment via the public Internet. We collected
throughput measurements using iperf [1] every 5 minutes for
a week and performed tcppings [2] every minute. We found
that at these low bandwidths, the primary performance benefit
is consistent throughput (see summary in Table 6). Notably,
the latency can even be worse across these dedicated links,
though not significantly so considering the variability.

Figure 6: Direct link measurement setup.

Client Cloud Direct Link? Measurement Mean Std. Dev.
AWS Yes Throughput 51 Mbps 0.23 Mbps
AWS No Throughput 169 Mbps 85 Mbps
Azure Yes Throughput 50 Mbps 1.4 Mbps
Azure No Throughput 117 Mbps 80 Mbps
AWS Yes Latency 4.89 ms 1.74 ms
AWS No Latency 3.38 ms 1.73 ms
Azure Yes Latency 12.53 ms 9.36 ms
Azure No Latency 7.45 ms 4.39 ms

Table 6: Summary of direct link measurements.

12 QoS Controller
More formally, the job of a QoS controller is as follows. Each
tenant, t, can have n classes of traffic, decreasing in priority:
C1, C2 . . . Traffic in these classes must be mapped to the
cloud provider best-effort and dedicated classes B and D. The
tenant reserves some dedicated egress bandwidth, rt . To map
the classes, each host x reports xt

i , the bandwidth tenant t
consumed in class Ci every interval of k seconds to the per-
tenant controller. Every interval, the controller calculates the
total bandwidth for each class, Ci. Starting with the highest
priority class, C1, the controller adds xt

i to the running total
dedicated bandwidth, xD, and maps the class to the dedicated
cloud provider class, D. When xD > rt , the controller maps the
current class Cs to a split class, S. All subsequent classes C j>s
are mapped to B. The fraction of the bandwidth used by Ci
which would fit into the reserved bandwidth fs = (xD−rt)/Cs
is calculated as well. The controller sends fs and Cs to all hosts
that reported in the previous interval.

The (enforcement module at) hosts then install the cal-
culated mapping between tenant and cloud provider classes.
Traffic belonging to Ci <Cs is simply marked as reserved (D)
while traffic in Ci >Cs is marked as best-effort (B). For traffic
belonging to Cs, the host calculates the maximum allowed
dedicated bandwidth in the split class bd = fs · xt

i . This value
is used for per-flow admission to D for traffic in Cs. When
a new flow in Cs arrives, a timestamp is recorded. After m
time has passed, the flow is eligible for promotion to D. Its
bandwidth over the last m seconds, b f low, is compared against
bd . If b f low < bd the flow is mapped to D and bd is updated
(bd = bd − b f low), otherwise the flow is mapped to B. This
evaluation is performed every m seconds for each flow in
Cs which has not been admitted to D. Accordingly, this pro-
cess requires per-flow state, though only proportional to the
number of flows in Cs during a single reporting interval.

13 Case Study 1 Code
In Figure 7 is an excerpt of the code required to implement
Case Study 1 using first-party cloud APIs.

Figure 7: Excerpt of the code necessary to setup the Azure side of
Case Study 1.



14 Terraform Example
Below is a code snippet from one of our scraped Terraform
files.

Figure 8: Code snippet from a scraped Terraform file.
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