
Principles for Internet Congestion Management
Paper #362

Abstract
Given the technical flaws with, and the increasing non-

observance of, the TCP-friendliness paradigm, we must re-
think how the Internet should manage congestion. We ex-
plore this question from first principles but within the con-
straints of the Internet’s current architecture and commercial
arrangements. We propose a new framework, Recursive Con-
gestion Shares (RCS), that provides bandwidth allocations
that are independent of which congestion control algorithms
flows use, but consistent with the Internet’s economics. We
evaluate how well RCS achieves this goal through game-
theoretic calculations and simulations as well as network
emulation.

1. INTRODUCTION
In addition to being a technological marvel whose archi-

tecture has accommodated mind-boggling changes in size,
speed, technologies, and uses, the Internet is also a mas-
sive experiment in decentralized resource sharing. Because
computer communications are bursty, the Internet relies on
packet-level statistical multiplexing to achieve reasonable
efficiency. To deal with the inevitable overloads, the Internet
relies on host-based congestion control algorithms (CCAs).
With this approach, the bandwidth a flow receives can

depend heavily on the aggressiveness of its CCA. The Inter-
net community quickly recognized that users would have
an incentive to deploy ever more aggressive CCAs, thereby
leading to overloads. To prevent this, the Internet community
informally required all CCAs to be TCP-friendly (hereafter
TCPF), as defined by [1]: “a flow is TCP-friendly if its ar-
rival rate does not exceed the arrival of a conformant TCP
connection in the same circumstances.” 1 TCPF primarily
applies to wide-area traffic on the public Internet, and we
focus on that case in this paper. Specialized congestion con-
trol solutions are available in private deployments such as
datacenters, enterprises, and private WANs, where there is a
single administrative authority.

There are numerous practical and technical problems with
TCPF. Prior work has shown that it is difficult to enforce [3]
TCPF, and that our understanding of the dynamics of CCAs
breaks down at scale [4]. In addition, TCPF limits CCAs’
ability to ramp up quickly and achieve full efficiency [5]
1At the time of [1], the term “TCP” prescribed a specific CCA: NewReno, as
standardized in RFC2582. Also, even the staunchest of the early advocates
recognized that TCPF was not tenable at high speeds, but the intent of
proposals like High-Speed TCP [2] was to retain TCPF at lower speeds and
create new standards for behavior at these higher speeds.

and hinders the emergence of new delay-sensitive CCAs (as
shown by Copa [6] and Nimbus [7]). It has also become clear
that TCPF is no longer a strict requirement in deploying new
CCAs, and that, in practice, non-TCPF CCAswill be deployed
widely. For example, the TCP-unfriendly CCA BBR [8–10]
has nonetheless been widely adopted at Google, Amazon,
Akamai, Dropbox, and Spotify for significant portions of
their traffic.2
Given that TCPF is both deeply flawed and no longer ad-

hered to by the major Internet actors, we should consider
whether there are suitable alternatives to the TCPF para-
digm. This simple but central issue is the focus of this paper,
and to that end, we explore from first principles what new
conceptual framework might replace TCPF. However, while
we reason from first principles, we do not start with a clean
slate. We assume that, within our design/deployment time-
frame, there will be no fundamental changes in the Internet
architecture (e.g., IP, BGP, and the best-effort service model)
and its commercial arrangements (e.g., how ISPs charge for
service and peer with each other, and the widespread adher-
ence to valley-free routing [11]). We thus seek a conceptual
foundation for how the Internet should share bandwidth
that (i) can be implemented within the current architecture
(though requiring additional protocols and mechanisms) and
(ii) provides bandwidth allocations that are consistent with
the current commercial arrangements.

2. REPLACING TCPF
Before addressing how we might replace TCPF, one might

ask why we need any framework that guides how the In-
ternet shares bandwidth. The reason is simple: without a
coherent resource-sharing framework, ever-more aggressive
CCAs could be deployed over time, and the resulting increase
in overall congestion would be damaging to the Internet.
The key issue with TCPF, and with the total lack of a

framework, is that the network plays a passive role, so ag-
gressive CCAs receive more bandwidth on congested links.
We propose to go to the other extreme by requiring that the
network actively enable all reasonable CCAs to achieve the
same bandwidth in the same static circumstances. We call
this CCA independence (CCAI), and it removes the need for
a single standard CCA and instead fosters widespread CCA
diversity and innovation. Given our assumption about no

2While BBRv2 is less unfair than the original BBR, it is still not TCP-friendly.
However, it is not the degree of BBR’s violation of TCPF that is our concern,
but the lack of resistance to deploying CCAs that do not satisfy TCPF, which
applies to both BBR and BBRv2.

fundamental changes in the architecture or economics of the
Internet in the near term, this paper addresses the challenge
of achieving CCAI within a framework that is consistent
with the current Internet’s economic model.

Despite the vast literature on network-assisted congestion
control, there is no such proposed framework. For instance,
neither of the two leading contenders to replace TCPF – per-
flow fairness (i.e., as achieved by fair queueing [12, 13]) and
network utility maximization (i.e., as inspired by the work of
Kelly [14, 15]) – are consistent with the commercial realities
of the current Internet. This is because both of these ap-
proaches focus on individual “flows” (i.e., seeking to achieve
fairness between flows or to maximize the sum of flow util-
ities), but flows have no role in the Internet’s commercial
agreements (see [16]); flows don’t have “rights” to bandwidth
or utility, nor are they the units for which users are charged.
Thus, to meet the challenge above, we need a new ap-

proach, and this paper proposes “Recursive Congestion
Shares” (RCS). RCS is similar to (and inspired by) the work in
[17], but we find (as described in §8 and as evaluated in §6.2)
that the mechanism that paper proposed does not achieve
CCAI. Here, we pursue the quest for CCAI far more deeply
by describing a set of principles that should guide our design
and then defining a framework based on those principles
that does indeed achieve the desired goal of CCAI. How-
ever, before turning to those principles, we address three key
questions.
What is a “reasonable” CCA? Recall that our goal of CCAI
requires that a flow’s bandwidth should be independent of
its or other flows’ choices of CCA, as long as the CCAs are
reasonable. This requires a definition of “reasonable”: we
say a CCA is reasonable if it effectively uses the available
bandwidth in static settings while avoiding persistent and sig-
nificant loss. This is compatible with all deployed CCAs we
know of. Loss-based CCAs incur persistent low losses (but
not high loss), while BBR can incur occasional significant,
but not persistent, losses (e.g., if a flow encounters a quick
reduction in bandwidth). Indeed, there seems to be no reason
to ever incur persistent and significant losses, so we assume
the existence of a community agreement that such CCAs are
not acceptable. In contrast to TCPF, this requirement is rela-
tively easy to enforce and adhere to, and imposes no serious
limitations on desirable CCA design properties. Moreover,
this requirement prevents flows from needlessly harming
other flows, as in the dead-packet phenomena discussed in
[18].
What is the role of CCAs post-CCAI? In a static scenario
(where the rates of other flows and the available bandwidth
are fixed), CCAI implies that all reasonable CCAs achieve
the same level of bandwidth. There is no reason for CCA
innovation in such static scenarios, but Internet conditions
are constantly changing, and different CCAs could have very

different tradeoffs in terms of how actively they explore
network conditions and what levels of loss and delay they
incur while doing so [5]. Since applications have different
tolerances for loss, delay, and latency, a range of CCAs will
remain necessary to meet their needs.
Is RCS deployable? Our goal with RCS is to provide a prin-
cipled conceptual framework for Internet bandwidth alloca-
tion rather than design a fully operational mechanism for
immediate deployment. However, nothing in our design is
inherently impossible. Nonetheless, there are significant bar-
riers to its deployment, as RCS would clearly require changes
in network operations and customer expectations, and RCS
would need modifications to deal with the complexities of
the modern Internet (e.g., rare violations of valley-free rout-
ing). We briefly discuss deployment incentives for RCS in
§7.2, which might cause carriers to overcome these concerns.

Importantly, as we discuss in §7.3, deploying RCS at Inter-
net scale will likely require approximations relative to our
prototype implementation that reduce the amount of state
the implementation must maintain. Evaluating the approx-
imations we propose would require a large-scale measure-
ment study that is beyond the scope of this paper. Overall,
we argue that as a research community, our focus should
first be on providing the intellectual underpinning for es-
sential design questions, such as how to replace TCPF; the
detailed and deployable mechanisms can come later, as we
as a community gather more measurements and gain more
engineering and operational experience with approximating
prototypes.

3. PRINCIPLES FOR “CONSISTENT” CCAI
Our goal is to achieve CCAI in a manner that is consis-

tent with the Internet’s commercial arrangements, but it is
far from obvious what it means to be “consistent with the
Internet’s commercial arrangements.” Here, we state three
principles that describe what this entails; we discuss how to
achieve these principles in §4. Since these principles should
guide congestion management both now and in the future,
we do not tie them to the characteristics of today’s traffic
or network technologies, nor make assumptions about what
applications are dominant. We illustrate these principles in
Figure 1.
Principle #1: Bandwidth allocations should only be
enforced when the network is congested, and should
be described in terms of relative rights.3
This means that when the network is congested, it uses

packets’ relative rights (explained next) to determine which
to drop. In contrast, expressing bandwidth rights as guaran-
teed rates (i.e., specifying the absolute levels of end-to-end
3Edge ISPs typically throttle a user’s bandwidth on their access line to their
contractual rate, regardless of congestion. Our focus here is on congestion
internal to the Internet.

2

bandwidth a user can expect) would greatly reduce statistical
multiplexing, and therefore be impractical. This condition
does not disallow RCP [19] or XCP [20], but does disallow
IntServ [21]; the former two only give ephemeral estimates
(based on some notion of relative rights) while IntServ makes
persistent guarantees (not based on relative rights).
Principle #2: These relative rights should be tied to cur-
rent commercial arrangements, respecting their gran-
ularity, recursive nature, and flow of money. Users pay
for access at the edge, so the prevailing commercial arrange-
ments are at the granularity of these access agreements, not
at the level of individual flows. In addition, these access agree-
ments are recursive (i.e., packets are delivered end-to-end
because the sender’s carrier pays the next-hop carrier, which
pays the subsequent-hop carrier, etc.). Money similarly flows
from a receiver’s domain to that domain’s provider, and so
forth. These inter-domain arrangements are crucial to how
networks carry traffic, and we thus argue that their recur-
sive nature must play a role in how the network manages
congestion.
Principle #3: While the network determines band-
width allocations between two endpoints, the end-
points should determine the composition of traffic that
flows between them. This basic requirement is clear, but
the question is which endpoint should have control. The
guidance from Principle #2 should determine whether the
sender or receiver is responsible for controlling this traffic.
Decisions should follow the flow of money, with senders
making decisions about what traffic enters the network (us-
ing a mechanism such as Bundler [22]) and receivers mak-
ing decisions about what traffic exits the network (using a
mechanism such as Crab [23]). Intermediate cases should be
determined by the money flow at the point of congestion. In
particular, because of the dangers of “zero-rating” 4 [24–26],
it is important that receivers, not senders, make decisions
about what traffic they receive.

4. FROM PRINCIPLES TO PRACTICE
We next turn these principles into an algorithm for calcu-

lating bandwidth allocations. For ease of exposition, we first
consider allocations in static settings where users send at
fixed rates over links with fixed capacities. The mechanisms
we propose for RCS can handle realistic dynamic settings,
but it is hard to reason about such settings in a principled
manner. After developing this algorithm for bandwidth al-
locations, we then ask (in §5) whether the RCS allocations
achieve CCAI. Answering this question in the affirmative is
the central contribution of this paper.We further evaluate how
our approach interacts with real CCAs (§6).We then discuss
(i) some other practical concerns (§7), (ii) how RCS compares
4With zero-rating, content providers pay networks to deliver their traffic,
but not traffic from other content providers, to users.

Comcast

So
nic

Fio
s

Sonic Fios

Comcast
SonicA

B

C

Comcast

TikT
ok

Youtube

TikTok
Youtube

11

3

2

Fios

So
ni
c

Figure 1: Illustration of RCS principles: (1) Relative rights. (2) These
rights should be applied recursively. This queue first schedules traffic
between Fios (red) and the aggregate formed by Sonic (blue) and
Comcast (yellow). If it must drop a packet from this aggregate, it
considers Sonic andComcast’s relative rights at the upstreamdomain
A. (3) Endpoints manage traffic control at finer granularities. Here
the endpoint prioritizes the TikTok traffic over the Youtube traffic
within the Comcast aggregate.

to related work (§8), and (iii) finish with some concluding
remarks (§9).
4.1 Principle #1: Relative Rights
We explore the implications of relative rights in three scopes:
a link (by which we mean a technology that has multiple
ingresses and one egress), a switch (which has multiple in-
gresses and multiple egresses), and a domain (a network of
switches). We use these three tractable cases as “building
blocks” to reason more generally about managing congestion
in the Internet. In the first two cases, the congestion point is
at the egresses because (i) we assume that one switch’s egress
is another switch’s ingress and that the paired egress and
ingress have the same capacities (so any congestion would be
handled by the previous egress, not the ingress) and (ii) we
assume the switch has full internal bandwidth. In the third
case, a domain, the location of congestion will depend on the
specific scenario. In this section, we will assume that the rel-
ative rights are derived from the sender’s access agreement
(not the receiver’s), but we will generalize this in §4.2.

We use the term “user” to refer to the entity entering into
an access agreement (i.e., an agreement that provides it some
level of Internet service) at the network edge and “stream”
to refer to an aggregate of traffic entering the network at
the same ingress point and exiting the network at the same
egress point. Thus, a stream is traffic being sent by one user
and being received by another. The term “CCA” refers to
how a stream responds to congestion; such a response is in
fact is made up of several distinct flow-based congestion con-
trol algorithms and application behaviors (such as opening
additional connections or throttling streaming data), but for
convenience we model it as a single CCA.5 Hereafter, for
cases where we have multiple ingresses and egresses, as in

5We later return to the question of how to enforce CCAI within a stream
in §7.1. For now, we merely note that this (i) is a matter internal to a
single organization, and as such does not have to be consistent with any
economic agreements and is merely a matter of internal policy, and (ii)
requires mechanisms such as [22, 23] to implement that policy when the
congestion occurs elsewhere in the network.

3

switches and domains, we use the term 066A460C4 „8� U” to
refer to traffic entering at ingress 8 and leaving at egress U .
Relative Rights at a single link. Consider a single link
with several streams sending at rates A8 . We denote the re-
sulting egress bandwidths (i.e., the rate leaving the link from
each stream) by 08 with A8 � 08 : strict inequality represents
when the network drops packets from stream 8 , and we call
such streams “constrained”. The link is work-conserving, so˝
8 08 = "�# »˝8 A8 ��… where � is the bandwidth of the link.

In this context, we define relative rights in terms of weights
F8 , and allocate bandwidth to constrained streams propor-
tional to those weights. Specifically, for any two streams 8� 9
with 08 < A8 and 0 9 < A 9 , the following holds: 08

F8
=

0 9

F9
� 0:

F:

for all other streams : . The equality between 8 and 9 requires
that two constrained streams receive bandwidth proportional
to their weights. The inequality between 9 and : requires
that no unconstrained stream is getting more than if it were
constrained. This definition of relative rights implies that
08 = "�# »A8 �F8_… where _ � 0 is the smallest value that
allows

˝
8 08 = "�# »˝8 A8 ��….

This results in what we call “pipe-like” behavior. As a
stream increases its bandwidth demand A8 , at first its demand
is entirely satisfied, and then it is capped at some maximal
bandwidth. This sharp “knee” in the curve makes it easy for
a CCA to find the maximal allowed bandwidth, and doesn’t
reward streams for creating persistent drops (i.e., they get
no additional bandwidth by sending at a rate past the knee).
As a comparison, if a link does not actively manage con-

gestion and just uses FIFO packet scheduling, then the band-
width allocations are given by: 08 = min»A8 � A8 �˝

9 A 9
…, and the

average packet delay (which is the same for all streams) is
some function of

˝
9 A 9 that increases sharply as the quantity

reaches the link capacity. If we fix all other A 9 , 08 is strictly
monotonic in A8 and stream 8’s packets can experience sig-
nificant losses and delays even if A8 is very small (e.g., if the
remaining load

˝
9<8 A 9 is larger than the link capacity).

Relative Rights at a single switch. The minimal gener-
alization of the single-link approach is to have each egress
apply the single link definition with the weightsF8 for each
ingress 8 applied at all egresses U . This is the approach we
use in RCS.
We could also consider the case where the weights are

static but depend on each egress: i.e., the 066A460C4 „8� U”
from ingress 8 to egress U has a weight FU

8
. For simplicity,

we do not embrace this generalization in our treatment here,
but our results apply to this case as well.

However, one might argue that the weights should depend
on the current traffic matrix, with the total weight assigned
at ingress split across the weights applied at egress propor-
tional to the current traffic split. For instance, assume that
all ingresses and egresses have capacity � = 1,

˝
U F

U
8

= 1

for all 8 , and weights FU
8
for a given 8 are proportional to

the relative flow rate (i.e., if two-thirds of an ingress’s traffic
goes to one egress, then that aggregate gets two-thirds of
the ingress’s weight). Consider the case where there are two
ingresses – 8 and 9 – sending traffic to two egresses U� V .
Recall that reasonable CCAs maximize bandwidth subject to
the constraint that they do not experience significant and
persistent loss; in the context of this model this means they
select the maximal value for A8 such that A8 = 08 . Assume 8
sends all of its traffic, of rate A8 , to U while 9 splits its traffic,
of total rate A 9 , between U and V in proportions G and „1�G”.
Then the weight of 066A460C4 „8� U” is 1, of 066A460C4 „ 9� U” is
G , and of 066A460C4 „ 9� V” is 1�G . The only allocation choices
where ingress 9 does not incur persistent losses at egress U
are (i) G = 1 and A 9 = 1

2 (with A8 = 1
2) and (ii) G = 0 and A 9 = 1

(with A8 = 1). This is because, as soon as 9 dilutes its weight
by sending traffic to both egresses, some of its packets are
dropped. Thus, splitting weights proportional to traffic can
lead to pathological allocations, so we eliminate it as a viable
way of setting weights.
Relative Rights at a domain.We do not assume congestion
only happens at the edges of a domain, but we do assume
that the relative rights are determined by access agreements
between users and their domains as well as those between
domains. If there is no internal congestion, then a domain
behaves analogously to a switch. However, if the domain
does suffer internal congestion, it should enforce the relative
rights (as defined by the weightsF8 assigned upon egress) on
all internal links or switches where congestion occurs. We
believe most domains are, and will continue to be, managed
to avoid internal congestion except at particular hotspots
– such as cable modem termination systems (CMTSs) and
transoceanic links – so this enforcement need not be widely
deployed inside a domain. For convenience, in what follows
we assume there is no internal congestion.

Following [17], we call these weightsF8 congestion shares,
and they are determined as part of a user’s agreement with
their domain. The value of F8 is not directly related to the
access bandwidth, but presumably access agreements for
higher speeds will typically have higher congestion shares.
4.2 Principle #2: Recursion and Following The

Money
We take the approach discussed above for allocating band-

width in a single domain as a basic building block, and now
discuss how to extend that approach across multiple domains
using the second principle.
What does “Recursion” mean? Still focusing on the case
where weights are assigned on ingress to a domain, when a
user’s packets enter their ingress network (call it domain A),
their relative rights when leaving A (via one of A’s egress
links) should be determined by the user’s access agreement

4

with domain A. When those packets travel from domain A
to domain B over some link L,6 to first order the relative
rights of those packets when leaving domain B should be
determined by the access agreement between A and B on
that link L. While B’s decision about how many of A’s pack-
ets to drop is driven by the access agreement between A
and B, when domain B is deciding which of A’s packets to
drop, the decision should be driven by the relative rights
derived from A’s various access agreements with the users
associated with that traffic (as in Figure 1). This is what we
mean by recursion of access agreements: (i) we recursively
assign relative rights as packets travel through the network
based on the agreements with the domain in which they are
currently (since we are assuming no internal congestion in
this example, these rights are only relevant at the egress of
a domain), and (ii) we apply these rights in a hierarchical
fashion, first applying their current rights to decide the total
bandwidth, and then turning to their previous rights. Thus,
RCS associates each stream with a hierarchy of access rights.
The way we enforce relative rights is to schedule packets
(see §6), so if a stream exceeds its bandwidth allocation it
will eventually overflow its queue and its packets will be
dropped.
What does “Follow the Money” mean? In the Internet,
money typically flows from end users to domains and onward
to other domains which provide broader routing reach and
eventually ending in the Tier 1 providers that freely peer with
each other. The typical routing path goes up this hierarchy of
domains (going from customer to provider) and then down
(going from provider to customer). Thus, for a flow between
two end users, there will exist a point at which packets switch
from following the flow of money to transmission against
the flow of money. We use this observation to devise two
rules that control which relative weights guide the sharing of
bandwidth. We will first consider one domain’s relationship
with end users, then explain how the same two rules also
apply to traffic between domains.
The first rule is that, consistent with Principle #3, at the

egress from a domain to its user (i.e., an aggregate’s desti-
nation), the domain should derive the user’s relative rights
from its commercial agreement with that user. As an exam-
ple, consider two media streams coming from two different
content providers, with a total bandwidth that is larger than
the domain’s egress to the user; the user should have the
power to assign weights expressing the relative rights of
those streams.
Analogously, the second rule is that when an end user’s

traffic enters a domain (i.e., an aggregate’s source), its com-
mercial agreement with the domain should determine its

6Our approach also applies to peering via IXPs, which we briefly explain in
§6.

relative rights at the domain’s egress. That is, when the
traffic from two users exceed the capacity of one of the do-
main’s egress links, the relative weights are determined by
the weights of the sending users. Note that this rule con-
flicts with the first rule in the case that an aggregate both
enters a domain from an end user and exits the same domain
to another end user. In this case, the first rule applies; i.e.,
the receiver determines the aggregate’s relative rights. This
receiver-preference tiebreak is important because it prevents
zero-rating, where a company can pay provider domains to
deliver only their traffic to users at the exclusion of other
traffic.
What allocations does this producewhen applied recur-
sively? Given these two specific rules for packets entering
and exiting the Internet, which respect the flow of money, we
now seek to apply this approach recursively. While today’s
interdomain agreements are more complicated than the Gao-
Rexford model [11], we believe that the following two state-
ments hold for the vast majority of the cases: (i) for a specific
logical link between domains A and B, either A pays B, or B
pays A, or neither pays, and (ii) the payment structure along
Internet paths are “valley-free” in the sense Gao and Rexford
describe. Thus, using the term customer/peer/provider to
refer to the flow of money on a given link, we know that,
given valley-free routes, two facts hold. First, if the egress U
is to a customer, then all subsequent hops are to customers
(and they determine all the hierarchical weights assigned to
the aggregates at that egress). Second, if the egress U is to a
peer or provider, then all previous hops are from customers
(and they determine all the hierarchical weights assigned
to the aggregates at that egress). As a result, all aggregates
at a given egress U have their weights determined in the
same direction (either previous hops, or future hops). The
resulting bandwidth allocations result from the recursive
application of relative weights.

DefineF8�U as the weight assigned to 066A460C4 „8� U”. Tak-
ing the case where the weights at an egress U were assigned
recursively by previous ingresses, the calculation goes as
follows: first calculate the allocation to each 066A460C4B „8� U”
for all 8 using the weights assigned by ingresses 8 . That pro-
duces a set of allocations 08 . Then, for each 066A460C4 „8� U”,
calculate the allocations for all of the aggregates that entered
through ingress 8 (with the weights assigned by their previ-
ous hop ingresses), treating the total bandwidth as 08 . This
process recurses all the way down the hierarchy of domains
until it reaches end users. We call this allocation Hierar-
chical Weighted Fair Sharing (HWFS), which is identical to
the static allocations achieved by the various hierarchical
weighted fair queueing algorithms in the literature [27, 28].
Example. We use the example in Figure 2 to explain HWFS.
In the diagram, packets flow in the direction of the black ar-
rows, and money flows strictly upward from users (senders

5

<latexit sha1_base64="IWBFS6rwB4FrgZ/DkxAzHkjRvSo=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kpsi6rHoxWMF+wHtUrJptg1NskuSFcrSv+DFgyJe/UPe/Ddm2z1o64OBx3szzMwLE8GN9f1vb219Y3Nru7RT3t3bPzisHB23TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptL9XSAB5WqX/PnQKsEF6QKBZqDyld/GNNUMmWpIMb0sJ/YICPacirYrNxPDUsInZAR6zmqiGQmyOa3ztC5U4YoirUrZdFc/T2REWnMVIauUxI7NsteLv7n9VIb3QQZV0lqmaKLRVEqkI1R/jgacs2oFVNHCNXc3YromGhCrYun7ELAyy+vkna9hq9q+OGy2rgt4ijBKZzBBWC4hgbcQxNaQGEMz/AKb570Xrx372PRuuYVMyfwB97nD3pcjd8=</latexit>

2u1
<latexit sha1_base64="PguoHMo6q6YsMImPPvzT7UaI9SY=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIzOwyDyEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rypk2vv/tra1vbG5tl3bKu3v7B4eVo+O2TqwitEUSnqhuhDXlTNKWYYbTbqooFhGnnWhyl/udJ6o0S+SjmaY0FHgkWcwINrlUtwM2qFT9mj8HWiVBQapQoDmofPWHCbGCSkM41roX+KkJM6wMI5zOyn2raYrJBI9oz1GJBdVhNr91hs6dMkRxolxJg+bq74kMC62nInKdApuxXvZy8T+vZ018E2ZMptZQSRaLYsuRSVD+OBoyRYnhU0cwUczdisgYK0yMi6fsQgiWX14l7XotuKoFD5fVxm0RRwlO4QwuIIBraMA9NKEFBMbwDK/w5gnvxXv3Phata14xcwJ/4H3+AM88jhc=</latexit>

2ui

<latexit sha1_base64="jwC4LrnZNy1I1Fy6MYfLbluNvmA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9P3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwYKjaE=</latexit>s1
<latexit sha1_base64="1j9CoW/9rqb+bP/qgXomQHH5dAs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9MX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1rqjdk=</latexit>si

<latexit sha1_base64="1RQxKz04H24FNwFH3IO/27Rye3c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04KX9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aVTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07JhuAtv7xKWhdVr1b17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AVMNjTo=</latexit>

1u

<latexit sha1_base64="1j9CoW/9rqb+bP/qgXomQHH5dAs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9MX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH1rqjdk=</latexit>si
<latexit sha1_base64="jwC4LrnZNy1I1Fy6MYfLbluNvmA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9P3+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwYKjaE=</latexit>s1

<latexit sha1_base64="IWBFS6rwB4FrgZ/DkxAzHkjRvSo=">AAAB63icbVBNSwMxEJ31s9avqkcvwSJ4Kpsi6rHoxWMF+wHtUrJptg1NskuSFcrSv+DFgyJe/UPe/Ddm2z1o64OBx3szzMwLE8GN9f1vb219Y3Nru7RT3t3bPzisHB23TZxqylo0FrHuhsQwwRVrWW4F6yaaERkK1gknd7nfeWLa8Fg92mnCAklGikecEptL9XSAB5WqX/PnQKsEF6QKBZqDyld/GNNUMmWpIMb0sJ/YICPacirYrNxPDUsInZAR6zmqiGQmyOa3ztC5U4YoirUrZdFc/T2REWnMVIauUxI7NsteLv7n9VIb3QQZV0lqmaKLRVEqkI1R/jgacs2oFVNHCNXc3YromGhCrYun7ELAyy+vkna9hq9q+OGy2rgt4ijBKZzBBWC4hgbcQxNaQGEMz/AKb570Xrx372PRuuYVMyfwB97nD3pcjd8=</latexit>

2u1
<latexit sha1_base64="PguoHMo6q6YsMImPPvzT7UaI9SY=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHoxWME84BkCbOT2WTIzOwyDyEs+QUvHhTx6g9582+cTfagiQUNRVU33V1Rypk2vv/tra1vbG5tl3bKu3v7B4eVo+O2TqwitEUSnqhuhDXlTNKWYYbTbqooFhGnnWhyl/udJ6o0S+SjmaY0FHgkWcwINrlUtwM2qFT9mj8HWiVBQapQoDmofPWHCbGCSkM41roX+KkJM6wMI5zOyn2raYrJBI9oz1GJBdVhNr91hs6dMkRxolxJg+bq74kMC62nInKdApuxXvZy8T+vZ018E2ZMptZQSRaLYsuRSVD+OBoyRYnhU0cwUczdisgYK0yMi6fsQgiWX14l7XotuKoFD5fVxm0RRwlO4QwuIIBraMA9NKEFBMbwDK/w5gnvxXv3Phata14xcwJ/4H3+AM88jhc=</latexit>

2ui

<latexit sha1_base64="1RQxKz04H24FNwFH3IO/27Rye3c=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF49V7Ae0oWy2k3bpZhN2N0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04KX9csWtunOQVeLlpAI5Gv3yV28QszRCaZigWnc9NzF+RpXhTOC01Es1JpSN6RC7lkoaofaz+aVTcmaVAQljZUsaMld/T2Q00noSBbYzomakl72Z+J/XTU147WdcJqlByRaLwlQQE5PZ22TAFTIjJpZQpri9lbARVZQZG07JhuAtv7xKWhdVr1b17i8r9Zs8jiKcwCmcgwdXUIc7aEATGITwDK/w5oydF+fd+Vi0Fpx85hj+wPn8AVMNjTo=</latexit>

1u

<latexit sha1_base64="UvDy0+J6T4yvEJ29lbU+wThmi9A=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI9FLx4r2A9oQ9lsNu3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4LFnECDa51AhH3qhac+vuAmideAWpQYH2qPo1DGOSCioN4Vjrgecmxs+wMoxwOq8MU00TTKZ4TAeWSiyo9rPFrXN0YZUQRbGyJQ1aqL8nMiy0nonAdgpsJnrVy8X/vEFqohs/YzJJDZVkuShKOTIxyh9HIVOUGD6zBBPF7K2ITLDCxNh4KjYEb/XlddJt1L1m3Xu4qrVuizjKcAbncAkeXEML7qENHSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QNgdo3O</latexit>

2d1

<latexit sha1_base64="sdPkexAlGGY/6WhWctoAY8BThq4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwSEjaA=</latexit>r1
<latexit sha1_base64="B55nrLKRv5QvIzSvbN8Qi6lHlJc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH1lkjdg=</latexit>ri

<latexit sha1_base64="gsZYsJchk3dfoDtMPvXVuEYT+oY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cq1hbaUDabSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGLZYIhLVCahGwSW2DDcCO6lCGgcC28HoZuq3n1BpnsgHM07Rj+lA8ogzaqx074X9as2tuzOQZeIVpAYFmv3qVy9MWBajNExQrbuemxo/p8pwJnBS6WUaU8pGdIBdSyWNUfv57NIJObFKSKJE2ZKGzNTfEzmNtR7Hge2MqRnqRW8q/ud1MxNd+TmXaWZQsvmiKBPEJGT6Ngm5QmbE2BLKFLe3EjakijJjw6nYELzFl5fJ41ndu6h7d+e1xnURRxmO4BhOwYNLaMAtNKEFDCJ4hld4c0bOi/PufMxbS04xcwh/4Hz+ADlJjSk=</latexit>

1d

<latexit sha1_base64="UvDy0+J6T4yvEJ29lbU+wThmi9A=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI9FLx4r2A9oQ9lsNu3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4LFnECDa51AhH3qhac+vuAmideAWpQYH2qPo1DGOSCioN4Vjrgecmxs+wMoxwOq8MU00TTKZ4TAeWSiyo9rPFrXN0YZUQRbGyJQ1aqL8nMiy0nonAdgpsJnrVy8X/vEFqohs/YzJJDZVkuShKOTIxyh9HIVOUGD6zBBPF7K2ITLDCxNh4KjYEb/XlddJt1L1m3Xu4qrVuizjKcAbncAkeXEML7qENHSAwgWd4hTdHOC/Ou/OxbC05xcwp/IHz+QNgdo3O</latexit>

2d1
<latexit sha1_base64="aw9vUnPlWHWS7MFVM9LMVcKQtFs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKVI9FLx4r2A9oQ9lsNu3S3U3Y3Qgl9C948aCIV/+QN/+NmzYHbX0w8Hhvhpl5QcKZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8epIrRDYh6rfoA15UzSjmGG036iKBYBp71gepf7vSeqNIvlo5kl1Bd4LFnECDa51AhHbFStuXV3AbROvILUoEB7VP0ahjFJBZWGcKz1wHMT42dYGUY4nVeGqaYJJlM8pgNLJRZU+9ni1jm6sEqIoljZkgYt1N8TGRZaz0RgOwU2E73q5eJ/3iA10Y2fMZmkhkqyXBSlHJkY5Y+jkClKDJ9Zgoli9lZEJlhhYmw8FRuCt/ryOuk26l6z7j1c1Vq3RRxlOINzuAQPrqEF99CGDhCYwDO8wpsjnBfn3flYtpacYuYU/sD5/AG1Vo4G</latexit>

2di

<latexit sha1_base64="sdPkexAlGGY/6WhWctoAY8BThq4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVvfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifPwSEjaA=</latexit>r1
<latexit sha1_base64="B55nrLKRv5QvIzSvbN8Qi6lHlJc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq8X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6tWq3v1lpX6Tx1GEEziFc/DgCupwBw1oAoMhPMMrvDnCeXHenY9Fa8HJZ47hD5zPH1lkjdg=</latexit>ri

Receivers

Sender Weights Receiver Weights

Tier 1

Tier 2

Senders
Figure 2: The center provides an example of how packets and money flow in RCS. By considering the recursive economic relationships that
comprise the Internet, we can construct a tree of relative rights (i.e., weights) corresponding to each egress of each domain. For example, the
left and right shaded regions show this hierarchical weight-tree for 1u’s egress and 1d’s egress, respectively.

and receivers) to customer domains and then to provider
domains. In our example, domains 1D and 13 peer with each
other. Domains 2D1. . .2D8 are 1D’s customers, and 2D1 itself
has customers B1. . .B8 . Similarly, domains 231. . .238 are 13’s
customers, and 231 itself has customers A1. . .A8 . In this exam-
ple, we specify that the link between 1D and 13 and between
13 and 231 are congested, but the other links are not.

A stream from B1 to A1 will traverse 2D1, 1D, 13 , and 231.
At each egress, it is possible to apply HWFS according to the
relevant customer agreements at that domain. For example,
at 2D1’s egress it would apply weights corresponding to its
access agreements with B1. . .B8 . However, 2D1’s egress is not
congested; as a result, no bandwidth enforcement is needed
there. 1D carries traffic from 2D1 to 1D’s various egresses. At
the egress to 13 , 1D first applies the relative rights between
2D1 (as a whole) and its other customers (2D8), and then
for the traffic belonging to 2D1 then applies the weights
of 2D1’s customers B8 . Once packets reach 13’s egress, they
begin flowing against the direction of money; therefore, the
receiver’s (i.e., A1’s) access agreement determines its relative
rights. More specifically, at its congested egress link to 231,
13 allocates the bandwidth between traffic headed to the
various the A8 using the relative rights determined by 231’s
commercial agreements with these customers.

Note that in this case the packet travels through two Tier
1 domains, with a peering link between them; some paths
(e.g., one between B1 and a customer of 2D2) do not traverse
a peering link; in this case, 1D’s egress to 2D8 would apply
weights corresponding to the receiving domain, following
the tie-breaking rule.

To summarize, weights are assigned to ingress aggregates
on the way up in a hierarchical fashion (building up a tree
of weights): i.e., all packets entering at ingress 8 are part of
the same aggregate with weightF8 throughout the domain
they are entering. When receiver weights apply, weights

are assigned to egress aggregates in a hierarchical fashion
(peeling off the hierarchy of weights as they approach the
egress to the network): i.e., all packets exiting at egress U
are considered part of the same aggregate with weightFU
throughout the domain they are exiting. No weights are
assigned based on top-level peering arrangements.
4.3 Principle #3: Endpoint Control
This principle states that while the network determines

bandwidth allocations to each stream, endpoints (both
ingress and egress) should determine the composition of
that stream. For example, while relative rights should de-
termine the aggregate bandwidth allocation between two
university networks based on their access agreements, those
networks may want to prioritize bulk transfers of research
data over video streaming traffic. RCS makes no statements
about this prioritization other than to note that endpoint do-
mains should control it. Of course, an endpoint could decide
to use a default FIFO policy, in which case the most aggres-
sive CCAs within the endpoint’s streams would take more
of its bandwidth allocation. However, RCS would prevent
those CCAs from affecting the bandwidth available to other
aggregates.
To understand how to achieve this, it is useful to distin-

guish between three cases where a stream might encounter
congestion. The first is on a user’s ingress into the network,
where the user can use its own internal mechanisms to con-
trol the composition of the stream. The second is somewhere
internal to the network, such as on an egress link between
two domains. Recent work on Bundler [22] and Crab [23]
provides a mechanism whereby users can remotely control
the internal composition of the stream; we provide more
detail in §6. The third case is at the endpoint domain’s egress
to the destination user; this is a special case of the prior one,
and the same mechanisms can be applied. Note that in keep-
ing with the previous principle, the sending user determines

6

the composition if congestion when sender weights apply,
and vice versa for the receiving user.

5. DOES RCS ACHIEVE CCAI?
We have, thus far, described a scheme, RCS, that is con-

sistent with the Internet’s economic model. We now ask the
question, does RCS achieve our goal of CCAI? In this section
we address that question from a game-theoretic perspective
where users are trying to individually optimize their through-
put, subject to the reasonability constraint that they do not
incur persistent losses. We analyze this game in two ways:
(1) a mixed-integer linear program (MILP) formulation that
determines whether multiple game-theoretic equilibria exist
and (2) simulations of game theory dynamics to determine
if reasonable CCAs would converge to those equilibria.
5.1 Just Enough Game Theory
In our model, the individual CCAs that control streams are

the game’s “players”. The “game” is defined by the network
topology and bandwidth allocation rules (i.e., RCS) that de-
termines, given a set of input rates A8 what are the resulting
throughput rates 08 (using the previous notation). A player’s
strategy is their sending rate, and their payoff is either their
sending rate (if their output rate is the same as their sending
rate) or �1 if their output rate is less than their sending rate
(as they are experiencing persistent drops). The question is,
what kinds of equilibria do these games converge to? We use
two equilibrium concepts from game theory.

The first relevant equilibrium concept is the familiar Nash
equilibrium [29]. A Nash equilibrium occurs when all players
(i.e., CCAs) are playing their optimal strategy (i.e., sending
rate) assuming all the other players have already chosen their
strategies and they remain fixed. That is, for each 8 , A8 is at the
maximal value such that 08 = A8 assuming all players other
than 8 keep their sending rate fixed. This is an equilibrium
where no player can gain by unilaterally deviating from the
equilibrium.

The second concept is the less familiar Stackelberg equilib-
rium [29]. In this model, a “leader” (i.e., an individual CCA)
commits to some strategy (i.e., a sending rate) first. Other
“follower” CCAs in the game observe this leader’s action
and react to it, reaching a Nash equilibrium in the resulting
sub-game with the leader’s strategy remaining fixed. A Stack-
elberg equilibrium (with a single leader 8) occurs when the
leader 8 has chosen its optimal strategy (has chosen the max-
imial value of A8 such that 08 = A8), assuming that in each case
the set of other players will reach a Nash equilibrium in their
subgame in response to the leader’s strategy. Informally, we
think of the leader as testing each of their strategies, observ-
ing where the others converge to, and picking the strategy
that leads to the best outcome.

For a given game, if there is a single Nash equilibrium and
it is also the only Stackelberg equilibrium, then there is little

doubt as to what the stable equilibrium of the game is, regard-
less of how “aggressive” each player is. However, if there is a
Stackelberg equilibrium that differs from the Nash, or if there
are multiple Nash equilibrium (which implies there must be
multiple Stackelberg equilibria), then aggressive players (i.e.,
the Stackelberg leaders) can try to manipulate the game to
achieve the outcome that maximizes their throughput. Note
that such manipulation would be very hard to achieve in
practice since the Stackelberg leader would either have to
be omniscient (so it could calculate its optimal strategy) or
sample the response to its behaviors over long time periods
(so that the other players would have equilibrated) and then
search for its optimal. Neither seems reasonable in real set-
tings, where users have little knowledge of other users and
workloads change rapidly.
5.2 Does Greed Pay?
To understand whether RCS can create the possibility of

multiple Nash equilibria or non-Nash Stackelberg equilibria,
we consider two very different models. The first, which we
design to have the possibility of pathological cases, is based
on a random topology, with each stream taking a random
path, and with weights assigned randomly at each ingress
along the path. We do not have aggregation in this model
(each stream is treated separately at each router), so each
router only applies its own weights to each stream and there
is no need to refer to previous hops. We start with a fully-
connected 10-node topology and then generate 40 streams
of path length 4 by picking a random sequence of nodes.
The second model uses topologies sub-sampled from the

CAIDA AS relationships dataset [30]. We pick a random AS
in the dataset to start an initial stream. Then, with probability
0�7 we set this stream’s next-hop (or previous-hop – we grow
the stream in both directions) to one of that AS’s neighbors
while maintaining a Gao-Rexford compliant path, or else
terminate the stream at a neighbor. When we add a new
AS to a stream’s path, with probability 0�5 we also generate
a new stream passing through at that AS. We grow this
stream using the same rules. We stop growing the topology
once we have generated 40 streams. Since the CAIDA AS
relationships dataset does not contain capacity or weight
information, we generate these randomly per-link.

We use a commercial MILP solver [31] to evaluate the two
models. We disallow streams from incurring persistent losses
and we run calculations on several different topologies from
each model.
Random Model. The MILP starts by defining allocation
variables where 0B denotes the allocation that stream B re-
ceives in an equilibrium. From a given scenario, we define a
set of links ! with capacities 2; , (as the full set of streams,
(; as the set of streams that pass through each link ; , and a
set of weights such thatF;�B denotes the weight of stream B

at link ; . Then we create bottleneck indicator variables �;�B
7

Topology Total Multiple Nash Non-Nash
Stackelberg

Random 18� 723 338 (1�81%) 598 (3�19%)
CAIDA-sampled 2� 897 0 0

Table 1: Under RCS, both multiple Nash equilibria and non-Nash
Stackelberg equilibria are rare.

such that �;�B == 1 if and only if stream B is bottlenecked at
link ; . Lastly, we create an indicator variable for links such
that �; == 1 if ; is at capacity. We then define the following
constraints:

8;2!8B2(4(;
�;�B == 0 (1)

8;2!8B2(;
8B02(;

0B

F;�B
� 0B0

F;�B0
� �" � „1 � �;�B ” (2)Õ

8;2!
�;�B == 1 (3)

Õ
B2(;

0B � 2; ��; (4)

Õ
8;2!

�;�B � 1 (5)

We ensure that no stream is bottlenecked at a link not on
its path with constraint (1). Constraint (2) ensures that each
stream gets its weighted fair share at each congested link ("
is some large constant). Constraint (3) ensures each stream
B is bottlenecked at exactly one link. Finally, constraint (4)
ensures no link ; is oversubscribed.
To ensure that we characterize the full range of Nash

equilibria for a given stream, we take turns optimizing 0B
for each stream B to determine the maximum and minimum
allocation for that stream under these constraints. Thus, a
Nash solution to a topology yields two equilibria for every
stream (though in most cases they turn out to be the same).
To generate a Stackelberg solution with stream B as a leader,
we optimize 0B and allow B to be bottlenecked at no links or
a single link by replacing constraint (3) with constraint (5).

We show the results on the first row of Table 1. Further, out
of a total of 748� 920 streams in all scenarios, only 68 (0�009%)
streams benefitted from an aggressive Stackelberg leader
strategy. The average percent gain for any stream attempting
to improve itself by adopting a Stackelberg strategy was only
0.011%. Thus, in this model, greed does not pay (very much).
CAIDA-Sampled Model For the CAIDA-sampled model, in
our MILP calculations domains assign weights to aggregates
on ingress. Egress links between two domains mirror these
agreements. Thus, in this MILP calculation we only model
weights assuming all traffic follows the flow of money (but
consider the more general case in §5.3 and §6.2). To imple-
ment the CAIDA-model, we add the following constraint to

what we described above:

8;2!8B2(;
8320���;

806602066B;�3 : 066;�B < 0660˝
B�2*066;�B

0B�
F066;�B �;

�
˝
B�2*0660 0B�
F0660�;

� �" � „1 � �;�B ”
(6)

This additional constraint enforces recursively-weighted
allocations. At each depth 3 of the hierarchy (with 3 = 0
being the root) for all streams B in (; (borrowed from the flat
model) we define 066;�B as the aggregate containing stream B

at link ; , and F066�; to be the weight assigned to aggregate
066. Lastly we define �; to be the maximum depth of the
hierarchy at link ; , 066B;�3 to be the set of aggregates at depth
3 of the hierarchy for link ; , and*8 to be the set of streams
comprising aggregate 8 .
We show the results on the second row of Table 1. We

found no topologies where multiple Nash or non-Nash Stack-
elberg equilibria existed, so there were no opportunities for
a Stackelberg strategy to return any benefit to the sender.
5.3 Even If Greed Paid, is the Payout Collectible?
The MILP formulations show that in the vast majority

of cases there is a single Nash equilibrium. The question
now is, will reasonable CCAs, which myopically adjust their
behavior, reach that equilibrium?
To model myopic game theory dynamics, we implement

a “best-reply” agent which iterates through several sending
rates between a min and max to check their utility. The two
sending rates surrounding the best one achieved are used as
the min and max for the subsequent iteration. The sender
terminates when the difference between the max and min
rate is lower than a small n .

We used our CAIDA topology generator (described above)
and sampled 606 8-stream topologies in which we consid-
ered only sender weights, as well as a further 424 sampled
topologies which consider both sender and receiver weights.
In all of these topologies, the best-reply agents converged to
a single equilibrium.

6. IMPLEMENTATION AND EVALUATION
We now turn to packet emulations to determine whether

an implementation of RCS’s bandwidth allocations provides
CCAI for real-world CCA implementations. We first describe
an implementation of a scheduling algorithm that can im-
plement HWFS, Hierarchical Deficit Weighted Round Robin
(HDWRR). We then show results from packet emulations (us-
ing Mininet [32]) which use three CCAs with varying levels
of aggressiveness: Reno, Cubic, and BBR. We compare results
across (i) the idealized best-reply allocations described above
in §5.3, (ii) HDWRR, (iii) per-flow fairness implementing
using the deficit round-robin (DRR) algorithm, and (iv) FIFO
scheduling.

8

Schedule(n) for root node:
while True:

n.deficit += n.quantum
for c in n.children:

n.deficit -= c.quantum
Schedule(n, c.quantum)

Schedule(n, credits) for non-leaf nodes:
n.deficit += credits
while n.deficit > 0:

c = n.children.head
q = min(n.deficit, c.quantum + c.leftover)
n.deficit -= q
Schedule(c, q)
if c is inactive:
n.children.remove(c)
if n.children is empty:

set n as inactive
n.deficit = 0

if n.deficit == 0:
c.leftover += c.quantum - q
n.children.rotate() // move c to tail

Schedule(n, credits) for leaf node:
n.deficit += credits
while n.queue not empty and

n.deficit > n.queue.head.length:
pkt = n.queue.dequeue()
n.deficit -= pkt.length
transmit(pkt)

if n.queue is empty:
n.deficit = 0 and set n as inactive

Listing 1: HDWRR implementation.

6.1 Hierarchical Deficit Weighted Round Robin
To evaluate RCS’s allocations on real CCA implementa-

tions, we must first implement a mechanism that can achieve
those allocations. For this we use a scheduling algorithm,
HDWRR, that is based on the Deficit Round Robin (DRR) [33]
implementation of a fair queueing scheduler. Listing 1 shows
pseudocode for our implementation. Unlike DRR, which is
constant-time, HDWRR’s complexity scales with the depth
of the weight tree. Additionally, while DRR can always as-
sign a given queue its full quantum, HDWRR must track
the case where a non-leaf node in the tree does not have
enough remaining deficit to accommodate a full quanta for
its next child. In this case, our implementation will assign
the child node any remaining deficit, but track the remaining
unassigned scheduling deficit for the next scheduling round.
6.2 Mininet Emulations
To evaluate our HDWRR implementation as well as its

interactions with real CCAs, we implement a prototype HD-
WRR in ~150 lines of Rust as a user-space TUN/TAP device.
The full implementation, including alternate DRR and FIFO

Figure 3: Achieved allocations on an emulated topology with real
CCAs.

Figure 4: Results across topologies.

schedulers, is ~1500 lines of Rust. We use the same CAIDA-
sampling topology generator that we described above in §5.2.
We generated 15-stream7 topologies, and for each topology
we further generated 10 random CCA assignments, where
we randomly assign one of Reno, Cubic, or BBR as each
stream’s CCA.

We consider five experiment configurations: (i) RCS-Ideal
is the bandwidth allocation our simulator returns, which we
include for reference; (ii) HDWRR, which is our implementa-
tion described above; (iii) One-Hop, which uses HDWRR but
limits the size of the weight tree to depth 1 (as in [17]); (iv)
DRR, which allocates per-stream, not per-aggregate, as in
fair queueing; and (v) FIFO, which represents the status quo.

We evaluate these five configurations on twometrics. First,
do they provide CCAI, i.e., do all flows achieve consistent
bandwidth regardless of what CCA they (or other flows) use?
Second, are the bandwidth allocations consistent with their
economic relationships (represented by RCS-Ideal)?
Visualizing HWFS + CCAI We show the results for one
CAIDA-sampled topology (generated using the secondmodel
in 5.2) which has a weight tree depth of 3 in Figure 3.
We observe that FIFO’s allocations are CCA-dependent
and far from RCS-ideal, while DRR’s allocations are CCA-
independent but far from RCS-ideal. Meanwhile, HDWRR’s
allocations are both CCA-independent (the variance between
CCA assignments and across iterations is low) as well as
close to RCS-ideal. Finally, One-Hop provides neither CCA-
independence nor RCS-compatible allocations, confirming
our refutation of their results.

7Recall that a stream can have multiple component TCP flows, and endpoint
domains control those flows’ relative allocations.

9

Results Across TopologiesWe extend this to results across
multiple emulated topologies in Figure 4. Here, rather than
show RCS-Ideal’s allocations directly (since they vary by
topology), we instead show each configuration’s squared-
error from RCS-Ideal’s allocations. On the left set of axes,
we show the distribution of the spread (i.e., the difference
between the 95th and 5th percentile achieved bandwidth
allocation per flow), CCA assignment, and topology. Over-
all, HDWRR achieves both the lowest error from the Ideal
allocation as well as the lowest amount of spread in that
allocation.

7. PRACTICAL CONCERNS

7.1 Additional Mechanisms
RCS Signalling: To implement HWFS, each egress needs
to know the hierarchy of aggregates to which a packet is
assigned, and the weights associated with those aggregates.
Providing this state requires (i) protocols carrying informa-
tion between ingresses and egresses within the same do-
main, and (ii) passing between one domain’s egress and the
connected domain’s ingress. There are many possible imple-
mentations for this first task, but perhaps the most straight-
forward is standing signalling connections between each
ingress and each egress in a domain, and they periodically
exchange (in both directions) information about prefixes and
their associated weight hierarchies. For the second, all that is
needed is to forward a summary of the information received
from the intradomain signalling to the attached domain.
RCS Endpoint Control: Recall RCS’s third principle: while
the network should determine a stream’s total bandwidth
allocation, that stream’s endpoints should determine which
individual flows use that bandwidth. There is an implemen-
tation challenge in supporting more complex flow allocation
policies: the stream’s bottleneck (i.e., the egress link where
it encounters congestion) will likely not be at a link within
its control, which is where such control must be exercised.
To address this challenge, we adopt the approaches de-

scribed in Bundler [22] and Crab [23] which shift congestion
(and therefore the buildup of packet queues) from an egress
in the network to a link at the appropriate endpoint. This
requires two pieces of information: (i) what flows are bottle-
necked at the same egress, and (ii) what is their aggregate
throughput. Given this, the appropriate endpoint can then
throttle the stream at slightly less than its allocated band-
width, causing queues to build, and allowing it to exercise
whatever traffic management it chooses. RCS can easily be
extended to provide this information (and, in the case of
receivers, the throughput rate can be directly measured by
the endpoint).
Complications: As mentioned earlier, for congestion in-
ternal to a domain, the relevant links can use some form
of HWFS, using the same signaling mechanisms proposed

above. We think that domains will continue to be managed
in a way that internal congestion is rare except for specific
concentration points, and a domain can arrange to include
them in their internal signalling.

Our description so far assumes direct peering relationships
over dedicated bilateral links. Many domains peer via IXPs
over a common substrate, where the access line to a domain is
shared among several peering relationships. However, such
IXP peering arrangements are almost always settlement-
free, which means that the weights are set by the receiving
domain, and can be enforced by the IXP at the egress port to
the receiving domain using the same signalling information
as described above.
7.2 Policy and Incentives
While this work does not raise any ethical issues, it does

raise questions about policies and incentives.
Network Neutrality: The relationship between RCS and
network neutrality is explored in depth in [17], but here we
merely observe that there is no widely accepted definition
of network neutrality. Our proposal certainly violates the
dictate that “all packets should be treated equally” but (i) the
existence of routers with thousands of queues and extensive
scheduling features shows that this dictate is almost univer-
sally violated in practice, and (ii) most definitions of network
neutrality are more subtle than this, focusing more on an-
ticompetitive practices than on scheduling algorithms. For
example, Misra in [24, 34] proposes this vision of a network
neutral Internet: “Internet is a platform where ISPs provide
no competitive advantage to specific apps/services, either
through pricing or QoS.” Our proposal certainly is consistent
with this more general definition.
Incentives: RCS is designed to have bandwidth alloca-
tions follow the money. This is precisely what gives ISPs
an incentive to deploy RCS. Purely locally, a domain can
start by implementing RCS internally, treating congestion at
their egress points based on the agreements at their ingress
points; when congestion occurs, those with greater conges-
tion shares receive a larger share of bandwidth. This directly
provides additional value to these access agreements, and
can lead to greater revenue and a competitive advantage over
other providers. Then, on a bilateral basis, two connected
domains can agree to respect each other’s congestion shares;
this again is a value-added service to each other. A domain
having such arrangements can then say that purchasing
higher congestion shares not only benefits them within that
domain, but in the next downstream domain. Applying this
reason recursively, there are significant incentives that could
drive RCS deployment. This is in stark contrast to today’s
Internet, where domains only control their customers’ traf-
fic locally, so customers are often forced to pursue entirely
private wide-area networks at extreme cost (or, barring this
option, simply coping with the congestion).

10

Privacy:Of course the incentives above require that domains
reveal these congestion shares to their neighboring domains.
This reveals something about a domain’s set of customer con-
tracts. While the financial details are not known, certainly
the existence of various access agreements are already visi-
ble (e.g., operators can observe where an enterprise’s traffic
enters the Internet through BGP advertisements and direct
observation). Revealing the congestion shares does reveal
more about these agreements than what can be discerned
today, but we don’t know if this is a major concern, par-
ticularly as compared to the benefit of better service under
congestion.
7.3 Deployment and Scalability
Our prototype HDWRR implementation (§6.2) is in soft-

ware, which is of course unsuitable for Internet-scale de-
ployment. There are two relevant technical considerations
for deploying HWFS: the number of operations needed per
packet, and the number of required router queues. Imple-
menting HWFS requires (from Listing 1) $ „3” operations
per packet where 3 is the depth of the weight tree. Prior
work [35] indicates that 3 is typically � 3. Thus, the com-
putational complexity required is low, and compatible with
modern router hardware.

In terms of queues, in its purest form RCS dictates that the
weight tree include weights for every upstream (or down-
stream, for receiver-dictated weights) entity with a commer-
cial relationship to the Internet. Of course, there are already
easily millions of such entities today, and it is clearly unrea-
sonable to expect hardware to, in the worst case, maintain
such a large amount of state in the weight tree. We thus
propose two potential approximations to ease the amount
of state necessary for any individual router to maintain. We
note that we have not evaluated these approximations at In-
ternet scale (nor do we believe it is practical for us to attempt
this without data about current traffic patterns); we thus
leave the design of an Internet-scale RCS implementation to
future work.
Move Scheduling to the State Our prototype enforces
bandwidth allocation at each congested link, and does so
on the entire tree of congestion shares. An alternative is
to offload the scheduling of some subtree of aggregates to
upstream/downstream routers (depending on whether traffic
is moving with or against the flow of money). Of course, this
upstream/downstream router is not the natural bottleneck
for these aggregates, so it must be informed of its aggregate
bandwidth allocation before it can enforce that allocation
on its subtree. We observe that the systems we employ for
endpoint control (i.e., Bundler [22] and Crab [23]) perform
exactly this functionality, by using a CCA on an aggregate
to implicitly (or explicitly [19, 20]) signal this rate. Because
the bandwidth allocations vary in time and the CCAs used
on the aggregate only discover a delayed approximation of

this bandwidth, the bandwith allocations would only approx-
imate the ideal RCS calculation.
Dynamic State Assignment Since only constrained aggre-
gates need to have packets dropped when they exceed their
limits (unconstrained aggregates will experience their drops
at their bottlnecks), one can implement an approximation
to HWFS using an amount of state that is proportional to
the number of constrained aggregates, not the total number
of aggregates. Such an algorithm would need to be dynamic
in adjusting which state it kept as aggregate rates changed,
and thus would occasionally not implement HWFS precisely
as defined as it adjusted its state to reflect current usage.
How much savings does this offer? Our own experience at-
tempting to measure congestion in the Internet indicates that
congestion is relatively rare, and prior work fromDhamdhere
et al. corroborates this: “we did not find evidence of wide-
spread endemic congestion of interdomain links between
U.S. access ISPs and directly connected transit and content
providers” [36]. Since we expect that the number of con-
strained aggregates is small compared to the total number
of aggregates, we thus conjecture that this approximation
would be an effective way of implementing RCS.

8. RELATEDWORK
We first discuss the most directly relevant work, [17], and

then the two leading contenders to replace TCPF, before
finishing with a very brief listing of other related work.
How does our work relate to [17]? This paper was in-
spired by [17] where the basic idea of recursive congestion
shares was introduced. However, the detailed approach in
[17] has two major limitations. First, [17] only applies one
level of weights: those being assigned by the most recent
ingress the traffic has passed through. For user traffic that
is going directly from one domain to another (precisely, the
case where traffic goes from user X, to domain A, to domain
B), this is sufficient.8 However, this does not cover the case
where traffic goes from users X and Y, to domain A, to do-
main B, to user Z. If the congestion is at the egress of domain
B, there is no way for the transit provider to distinguish
between the streams belonging to the two customers X and
Y, and the customer with the more aggressive CCA will get
more bandwidth, and we showed this above in §6.2. Thus,
the version in [17] does not achieve CCAI even for some
relatively short paths.
The second limitation is that the design in [17] ignores

the role of receivers, only considering weights assigned by
ingress points. This raises issues equity issues (i.e., should
content providers determine the priorities on my network

8[17] incorrectly claims that their version of RCS is sufficient for traveling
through three domains, but this ignores traffic that is either generated and
consumed by end users (as opposed to being generated or consumed internal
to a domain, as it would be by Facebook or Google)

11

access line?), and also means that the allocations do not
follow the flow of money on the downward part of the path.
These two deficiencies mean that the more complicated but
more functional proposal presented here is required.
What about the alternatives? As mentioned previously,
the literature has suggested two main alternatives to TCPF.
The first, as initially articulated by [12] and further explored
by many, is per-flow fairness. However, the real benefit of
such approaches is not that they provide a morally superior
resource allocation; instead, the true benefit is that these
approaches provide isolation between flows so they achieve
CCAI. This approach was “dismantled” by Briscoe in [16]
where he observed that the resulting allocations made no
economic sense. Flows, no matter their definition (e.g., per
source, per destination, per source-destination pairs, per five-
tuple), have no relation to the commercial arrangements of
the current Internet. Of course, as Briscoe observed, TCPF
makes no economic sense either; thus, per-flow-fairness –
which achieves CCAI, but does not make economic sense –
is strictly an improvement over TCPF. In contrast, with RCS
we are searching to achieve both CCAI and economic sanity,
which per-flow-fairness most definitely does not.

The other alternative to TCPF is network utility maximiza-
tion (NUM), where each flow has a utility function and the
goal is to maximize this utility. This approach was introduced
by Kelly in [14, 15], and has generated a significant literature.
NUM’s fundamental idea is that congestion signals can serve
as shadow prices, providing a measure of how much con-
gestion a particular flow is causing other flows. If individual
CCAs optimize their own utility minus this shadow price,
the system at equilibrium will maximize the sum of utilities,
which is the socially optimal outcome.

This core idea could be employed in two ways. The most
straightforward is to actually charge these shadow prices
(i.e., users must pay for whatever shadow price charges they
incur), and then have users selfishly optimize accordingly.
For this, the utilities would have to capture the actual utilities
of users, which are hopelessly complicated and range far
beyond what a transport protocol can monitor. One could
then seek a more limited utility, which merely captures the
quality of the transport, but then it isn’t clear what that utility
function would be or what is achieved by maximizing it
network-wide. However, for our purposes, the most relevant
objection is that this approach requires a massive change in
how users are charged for Internet access and usage, which
renders it explicitly outside of our scope.
One could instead use congestion signals as a hint, and

have CCAs respond to them as if there were self-optimizing.
This approach essentially mandates a universal CCA and a
universal congestion signalling mechanism at routers. Thus,
this would replace the voluntary TCP-friendly paradigmwith

a voluntary NUM paradigm. This would not solve the incen-
tive problem, as CCAs that ignored these congestion signals
would get better service. In more limited deployments, like
datacenters, this is more feasible, because the network is
serving the needs of the operator, not individual users. See
[37] for such an example.

A far more profound difficulty with NUM, in our setting, is
that it is not consistent with the granularity of the Internet’s
current commercial model in which entities purchase service
from providers at relatively stable prices. The entities, which
could be home users or enterprises or other providers, pay
their provider for being able to send and receive packets.
There is some degree of utility maximization in this process,
but it is at the level of these entities that purchase access, not
at the level of individual network flows. RCS addresses this
level of utility by ensuring that the treatment their traffic
receives as it flows through the network reflects, to some de-
gree, the level of access they purchased (as measured by their
congestion shares, and the congestion shares their provider
receives from its peers, etc.).
What about other related work? There is a vast literature
on congestion control, which provides the context for this
work and which we cannot possibly acknowledge in full.
However, we did want to mention two recent works that
have shed new light on these issues: [3] provides a brilliant
discussion of TCP friendliness and its discontents, and [38]
provides a novel perspective on CCA diversity.

9. CONCLUSION
One might dismiss this paper as being unnecessary (to-

day’s Internet works reasonably well), untested (its proposed
mechanism has not yet been validated at scale), impracti-
cal (its mechanisms cannot be deployed in the near term),
and hysterical (seeing the adoption of BBR as an apocalypse
rather than a mere blip in the long history of rough adher-
ence to TCP-friendliness). We willingly plead guilty on all
counts, but see these objections as largely missing our point.
This paper is definitely not claiming to solve an urgent

practical problem with a well-tested and easily-deployable
solution. Instead, our goal is to address a fundamental con-
ceptual problem that has remained unresolved since Nagle’s
1985 paper [12], which is: how do we reconcile the goal of CCA
independence with the Internet’s commercial realities? The for-
mer is undeniably desirable, as it would enable much more
rapid CCA innovation, while the latter is unlikely to funda-
mentally change in the foreseeable future. Such a dilemma
deserves our intellectual attention even without an imminent
crisis. Our approach appears to have resolved this concep-
tual dilemma. Of course, there is much more that remains to
be done to both understand this approach theoretically and
engineer it to be more practically deployable, but we hope
this is a helpful first step.

12

References
[1] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Conges-

tion Control in the Internet. IEEE/ACM Trans. Netw., 1999.
[2] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649,

2003.
[3] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine

Sherry. Beyond Jain’s Fairness Index: Setting the Bar For The Deploy-
ment of Congestion Control Algorithms. In HotNets, 2019. doi: 10.
1145/3365609.3365855. URL https://doi.org/10.1145/3365609.3365855.

[4] Adithya Abraham Philip, Ranysha Ware, Rukshani Athapathu, Justine
Sherry, and Vyas Sekar. Revisiting TCP Congestion Control Through-
put Models & Fairness Properties At Scale. In Proceedings of the 2021
ACM Internet Measurement Conference (IMC), IMC ’21, New York, NY,
USA, 2021. ACM.

[5] Doron Zarchy, Radhika Mittal, Michael Schapira, and Scott Shenker.
Axiomatizing Congestion Control. SIGMETRICS, 2019.

[6] Venkat Arun and Hari Balakrishnan. Copa: Practical Delay-Based
Congestion Control for the Internet. NSDI, 2018.

[7] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana,
Mohammad Alizadeh, and Hari Balakrishnan. Elasticity Detection: A
Building Block for Internet Congestion Control. In SIGCOMM, 2022.
doi: 10.1145/3544216.3544221. URL https://doi.org/10.1145/3544216.
3544221.

[8] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. BBR: Congestion-Based Congestion Con-
trol. ACM Queue, 2016.

[9] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine
Sherry. Modeling BBR’s Interactions with Loss-Based Congestion
Control. IMC, 2019.

[10] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubramanian, and Anshul
Gandhi. When to Use and When Not to Use BBR: An Empirical
Analysis and Evaluation Study. In IMC, 2019. doi: 10.1145/3355369.
3355579. URL https://doi.org/10.1145/3355369.3355579.

[11] Lixin Gao and J. Rexford. Stable Internet Routing Without Global
Coordination. IEEE/ACM Trans. Netw., 2001.

[12] J. Nagle. On Packet Switches with Infinite Storage. RFC 970, 1985.
[13] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a

Fair Queueing Algorithm. SIGCOMM, 1989.
[14] Frank Kelly. Charging and Rate Control for Elastic Traffic. European

transactions on Telecommunications, 1997.
[15] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate Control for

Communication Networks: Shadow Prices, Proportional Fairness and
Stability. Journal of the Operational Research society, 1998.

[16] Bob Briscoe. Flow Rate Fairness: Dismantling a Religion. SIGCOMM,
2007.

[17] Lloyd Brown, Ganesh Ananthanarayanan, Ethan Katz-Bassett, Arvind
Krishnamurthy, Sylvia Ratnasamy, Michael Schapira, and Scott
Shenker. On the Future of Congestion Control for the Public Internet.
HotNets, 2020.

[18] Barath Raghavan andAlex C. Snoeren. Decongestion Control. HotNets,
2006.

[19] Nandita Dukkipati and Nick McKeown. Why Flow-Completion Time
is the Right Metric for Congestion Control. SIGCOMM, 2006.

[20] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control
for High Bandwidth-Delay Product Networks. SIGCOMM, 2002.

[21] S. Shenker R. Braden, D. Clark. Integrated Services in the Internet
Architecture: an Overview. RFC 1633, 1994.

[22] Frank Cangialosi, Akshay Narayan, Prateesh Goyal, Radhika Mittal,
Mohammad Alizadeh, and Hari Balakrishnan. Site-to-Site Internet
Traffic Control. EuroSys, 2021.

[23] Ammar Tahir and Radhika Mittal. Enabling Users to Control their
Internet. In NSDI, 2023.

[24] Niloofar Bayat, Richard Ma, Vishal Misra, and Dan Rubenstein. Zero-
Rating and Network Neutrality: Big Winners and Small Losers. In
Proceedings of IFIP WG 7.3 Performance, 2020.

[25] BEREC. Zero-rating. berec.europa.eu, 2015. URL https://berec.europa.
eu/eng/open_internet/zero_rating/.

[26] Niloofar Bayat, Richard Ma, Vishal Misra, and Dan Rubenstein. Zero-
Rating and Net Neutrality: Who Wins, Who Loses? SIGMETRICS,
2021.

[27] Jon C. R. Bennett and Hui Zhang. Hierarchical Packet Fair Queueing
Algorithms. SIGCOMM, 1996.

[28] Ion Stoica, Hui Zhang, and TS Eugene Ng. A Hierarchical Fair Service
Curve Algorithm for Link-sharing, Real-time and Priority Services.
SIGCOMM, 1997.

[29] Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, 1991.
[30] CAIDA. AS Relationships. https://www.caida.org/catalog/datasets/as-

relationships/, 2022.
[31] Gurobi Optimization. Gurobi optimizer: The world’s fastest solver.

https://www.gurobi.com/solutions/gurobi-optimizer/.
[32] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz,

and Nick McKeown. Reproducible Network Experiments Using
Container-Based Emulation. CoNEXT, 2012. doi: 10.1145/2413176.
2413206. URL https://doi.org/10.1145/2413176.2413206.

[33] M. Shreedhar and George Varghese. Efficient Fair Queueing Using
Deficit Round Robin. SIGCOMM, 1995.

[34] Vishal Misra. Half the equation and half the definition. peerunre-
viewed.blogspot.com, 2015. URL http://peerunreviewed.blogspot.com/
2015/12/what-is-definition-of-net-neutrality.html.

[35] Todd Arnold, Jia He, Weifan Jiang, Matt Calder, Italo Cunha, Vasileios
Giotsas, and Ethan Katz-Bassett. Cloud Provider Connectivity in the
Flat Internet. IMC, 2020.

[36] Amogh Dhamdhere, David D. Clark, Alexander Gamero-Garrido,
Matthew Luckie, Ricky K. P. Mok, Gautam Akiwate, Kabir Gogia, Vaib-
hav Bajpai, Alex C. Snoeren, and Kc Claffy. Inferring Persistent Inter-
domain Congestion. In SIGCOMM, 2018. doi: 10.1145/3230543.3230549.
URL https://doi.org/10.1145/3230543.3230549.

[37] Kanthi Nagaraj, Dinesh Bharadia, Hongzi Mao, Sandeep Chinchali,
Mohammad Alizadeh, and Sachin Katti. NUMFabric: Fast and Flexible
Bandwidth Allocation in Datacenters. SIGCOMM, 2016. URL https:
//doi.org/10.1145/2934872.2934890.

[38] Anirudh Sivaraman, Keith Winstein, Pratiksha Thaker, and Hari Bal-
akrishnan. An Experimental Study of the Learnability of Congestion
Control. SIGCOMM, 2014.

13

https://doi.org/10.1145/3365609.3365855
https://doi.org/10.1145/3544216.3544221
https://doi.org/10.1145/3544216.3544221
https://doi.org/10.1145/3355369.3355579
https://berec.europa.eu/eng/open_internet/zero_rating/
https://berec.europa.eu/eng/open_internet/zero_rating/
https://doi.org/10.1145/2413176.2413206
http://peerunreviewed.blogspot.com/2015/12/what-is-definition-of-net-neutrality.html
http://peerunreviewed.blogspot.com/2015/12/what-is-definition-of-net-neutrality.html
https://doi.org/10.1145/3230543.3230549
https://doi.org/10.1145/2934872.2934890
https://doi.org/10.1145/2934872.2934890

	Abstract
	1 Introduction
	2 Replacing TCPF
	3 Principles for ``Consistent'' CCAI
	4 From Principles to Practice
	4.1 Principle #1: Relative Rights
	4.2 Principle #2: Recursion and Following The Money
	4.3 Principle #3: Endpoint Control

	5 Does RCS Achieve CCAI?
	5.1 Just Enough Game Theory
	5.2 Does Greed Pay?
	5.3 Even If Greed Paid, is the Payout Collectible?

	6 Implementation and Evaluation
	6.1 Hierarchical Deficit Weighted Round Robin
	6.2 Mininet Emulations

	7 Practical Concerns
	7.1 Additional Mechanisms
	7.2 Policy and Incentives
	7.3 Deployment and Scalability

	8 Related Work
	9 Conclusion
	References

