CS 268 Graduate Computer Networks

Sylvia Ratnasamy
Spring 2023

About me: Sylvia Ratnasamy

Background

- PhD from UC Berkeley
- Joined UCB in 2011 after ~10 years in industry research
- Recent stints at a startup and at Google
- Networking has been my focus throughout

We have a GSI!

Shishir Patil

- 4th yr PhD student with Joey Gonzalez and Prabal Dutta
- Interests: Systems for ML, ML at the edge, Sky computing

Today's lecture

What is this course about?

Course logistics

Goals of this course

- To become familiar with Internet research
- To learn how to analyze a proposal
 - Critique problem selection and solution
- To get some practice in the art of expressing your point of view
- To apply what you've learnt by doing an original piece of work

What's involved? Quick glance.

- Read ~50 papers
- You submit a review for each paper
- We'll discuss them together in class
- Each student will lead the in-class discussion for one paper
- You define, execute, and present a research-oriented class project
- No exams or problem sets
- 6-7 fantastic guest speakers! (MIT, Google, UW, Microsoft)

Why study the Internet?

- As a system design problem, the Internet is *uniquely challenging*
- As a practical artifact, it has been *uniquely impactful*

Evolution in (and on) the Internet

Three broad phases

- 1. Building a global data communication network
- 2. Scaling; and the emergence of a commercial ecosystem (ISPs, vendors)
- 3. Innovation; and a shifting commercial ecosystem (CSPs, last mile operators)

Phase 1: Building a global data communication network

Impact: transformed how humans communicate

With email as the "killer app", we went:

- From voice to data communication
- From synchronous to asynchronous communication
- From one-to-one to group communication

A lesson in the power of inventing a fundamentally new capability!

Designing for the Internet is uniquely challenging

- A federated system
- Tremendous scale
- Enormous diversity
- Enormous dynamic range
- Prone to failure
- Distributed and asynchronous

Designing for the Internet is uniquely challenging

- Too complex for theoretical models
- "Working code" doesn't mean much

Addressing these challenges led to a new design paradigm (one that changed computer science!)

Impact: the Internet design paradigm

- Decentralized control
- Modularity through layering
- Best-effort
- IP as "narrow waist" interface
- Dumb network / smart endpoints
- The end-to-end design principle
- Fate-sharing

A radical departure from systems at the time Now ubiquitous in how we design large-scale systems

Example: a best-effort service model

- Fundamental question: what's the right service model that a network should support?
 - "contract" between network and its users/end-hosts
- Some possibilities:
 - "guarantee that data will be delivered"
 - "guarantee that data will be delivered within X time"
 - "return a confirmation of successful delivery or an error"
- Instead, what the Internet supports: "best effort" delivery of data
 - No guarantee on whether or when data will be delivered
 - No notification of outcome!

Phase 1 readings: the classics

Phase 2: Scaling & the emergence of a commercial ecosystem

1995

Commercialization

Exponential scaling

2005

BGP

Firewalls

Traffic engineering

NAT

Content delivery networks

High-speed routers

"Content is king" – *Bill Gates*

Proliferation of PCs

Impact: everything moves to the Internet

- Old content
- New content
- Brick-and-mortar businesses
- Banks, enterprises, government, ...

A lesson in the power of building a *general* capability!

Challenge: many gaps in the original design

- Decentralized control
- Layering
- Best-effort
- IP as "narrow waist" interface
- Dumb network / smart endpoints
- The end-to-end design principle
- Fate-sharing

No operational support!

Security not addressed

No way to isolate/differentiate traffic/customers

Routing does not reflect business relationships

No blueprint for how we upgrade and evolve

Impact: growing the Internet design paradigm

- The role of measurement
- The role of policy
- The role of management
- The role of security

• ...

Now standard components in operating any large-scale system

Impact (research): shining a spotlight

Tremendous innovation on top of the Internet infrastructure but challenging to innovate within the infrastructure itself

A Blueprint for Introducing Disruptive Technology into the Internet*

Tussle in Cyberspace: Defining Tomorrow's Internet

David D. Clark
MIT Lab for Computer Science

John Wroclaw MIT Lab for Computer

A Clean Slate 4D Approach to Network Control and Management

Albert Greenberg, Gisli Hjalmtysson, David A. Maltz, Andy Myers, Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, Hui Zhang

Impact (research): shining a spotlight

How do we architect for innovation in a complex ecosystem? (vendors, operators, users)

- How do we reconcile federation with competition and innovation?
- How do we reconcile a universal service model with evolution?

• ...

Phase 2 readings: more classics and new foundations

Phase 3: Innovation and a shifting ecosystem

Datacenter & cloud networking

Cellular access

Clos Fabrics

SDN smartNICs

DCTCP OpenFlow

NFV OpenRAN

Big Data & Al

Always-on users

Impact: the Internet is everywhere

Transforming everything

- The way we generate and consume content (live streaming, search)
- The way we do business (advertising, in-app purchases)
- The way we have relationships (facebook, twitter)
- The way we learn (wikipedia, MOOCs, chatGPT)
- The way we govern (e-voting, censorship, cyber-warfare)
- The way we cure disease (digital health, remote medicine)

Challenge: more gaps in the design ...

- Decentralized control
- Layering
- Best-effort
- IP as "narrow waist" interface
- Dumb network / smart endpoints
- The end-to-end design principle
- Fate-sharing

Critical goals for a hyperscale cloud operator:

Efficiency

Performance

Guaranteed availability

Need to innovate *within* the infrastructure to achieve these

... leading to new design paradigms

- Programmable infrastructure
- Centralization/consolidation
- The rise of customization
- Architecting for high performance

Many lessons in architecting for innovation and high performance

Impact: new design paradigms

- Programmable infrastructure (vs. "dumb network)
- Centralization/consolidation (vs. federation and distributed control)
- The rise of customization (vs. standardized general-purpose solutions)
- Architecting for high performance (vs. generality)

Many lessons in architecting for innovation and high performance

But only within a single provider and we're still understanding the tradeoffs!

Phase 3 readings: modern classics and the state-of-the-art

Finally, we'll speculate on the next phase

IoT, drones, satellite networks, ...

The Internet interacting with the physical world

Blurring the boundary between compute and network infrastructure Grappling with specialization & networking vs. the Internet

Societal issues: access, privacy, transparency

Growing calls for decentralization and democratization

2020

???

Why study the Internet?

- As a system design problem, the Internet is *uniquely challenging*
- As a practical artifact, it has been *uniquely impactful*
- Constant evolution means we always have new challenges and opportunities

An incredible lesson in system design and architecting for innovation

And fun, because we're still debating the big questions

- Decentralized control
 → But centralization simplifies management
- Layering → But collapsing layers improves performance
- Best-effort → But we need performance guarantees and verification
- IP as "narrow waist" interface → Specialization
- Dumb network / smart endpoints -> smartNICs, programmable switches
- The end-to-end design principle → in-network computation

Internet Research

- Epicenter is SIGCOMM, HotNets, NSDI
 - Also SOSP/OSDI, Mobicom, IMC, etc.
- Inherently broad in scope
 - Systems people but also theorists, PL, economists, hardware folks, etc.
- Big-picture architectural discussions tend(ed?) to dominate
 - But also new technologies, discoveries, methods, apps, etc.

Today's lecture

What is this course about?

Course logistics

Course information

Website: https://cs268.io

• Announcements: Ed

Reach me and Shishir via Ed (preferred) or email

Prereq: CS168 or equivalent (http://cs168.io)

Enrollment and the waitlist

- I will not be increasing the class size
 - If you're planning to drop, please do so quickly

- Undergrads:
 - We hope to have enrollment codes by end of week at which point you can join the waitlist
 - In the meantime, please email Shishir so we know how to contact you

Grading

Paper reviews and class participation	30%
Paper presentation	30%
Term project	40%

- Can miss up to 3 paper reviews with no penalty (don't need to inform us when you do)
- Frequent absenteeism will affect your grade

Reading papers

- Plenty of advice out there
- My take: don't overthink it. Just read it. Start to end. In depth.
- Then set the paper aside and think
 - What problem are they solving? -- in 1-2 sentences
 - Replay their motivating arguments do they make sense?
 - Replay how their solution works for a simple example -- can you? If not, go back to step 1.
- Once you're sure you understand, start critiquing
 - Is the problem important? ambitious? hard? have a long shelf-life?
 - Is the solution effective? Under what conditions does it break?
 - What other approaches are possible? Etc.

Reviewing papers

- Write a short review for each paper
 - Review ≠ summary !!
 - Length: ~one page
 - Be honest

- Submissions via google forms Shishir will post the links on Ed.
- Reviews are due 5pm the night before class

Typical format of the review

- 1. What is the problem being addressed?
- 2. Do <u>you</u> believe the problem is/was important?
 - Explain your thinking
 - Consider context
- 3. What is the solution's main insight (nugget)?
- 4. Do you think the solution is a good one? (strengths and weaknesses)
 - Explain
- 5. Did you enjoy the paper?

Lecture format

- 40 minutes per paper
 - ~15 minutes presentation and initial discussion
 - ~25 minutes deep-dive discussion all together
- Class discussion
 - Come prepared to discuss the main ideas, gaps, etc
 - We will all learn from each other
 - Let's have **no open laptops** in class

Presenting Papers

Each of you will be responsible for presenting and leading the discussion on one paper

- Skim the syllabus on cs268.io and look for lectures marked as "Student Led"; you will be presenting one of these papers
 - Shishir will post instructions for submitting your presentation preferences on Ed
 - Submit your preferences by 01/23 and we'll do assignments by 01/25
 - We'll follow a first-come-first-serve policy for assignments
- Student presentations will start on 01/31

Presenting papers (cont'd)

- Organize presentation to suit your style
 - Summarize-then-discuss, discuss-as-you-go,
- Some tips/expectations
 - Assume the class has read the papers → recap, don't explain
 - Go beyond the assigned paper: your job is to give the class a more complete picture
 - Prepare a set of questions to initiate discussions
- Send me and Shishir your slides at least THREE days before your presentation
- Recall: this is 30% of your grade!

Research Project

- Investigate new ideas and solutions in a class research project
 - Define the problem
 - Execute the research
 - Write up and present your research
- Undergrads must partner with a grad student
 - Highly encourage everyone to work with a partner
- Deadlines and details for project proposal and checkpoints will be posted on Ed
- Start early and consider <u>scope</u>

Recap: this course

- We will read and review ~50 papers
- Three components to your grade
 - Project (40%)
 - Paper presentation (30%)
 - Paper reading and class participation (30%)

Next Lecture

- Classics in Internet design
 - Required reading: Internet design principles [Clark'88]
 - Active networks [Tennenhouse and Wetherall'95]
 - Optional reading (but highly encouraged): end-to-end principle [Clark'81]

Recap: Your Immediate Action Items

- Read and review Clark'88 and ActiveNets
- Submit your preferences for papers you'd like to present
- If you plan to drop this course, please let us know promptly (and officially drop)

Thanks!